998 resultados para ZR ALLOYS


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Minor yttrium addition can improve the glass-forming ability of Cu-Zr-Al ternary alloys via suppression of the growth of eutectic clusters. Yttrium addition also makes the room temperature ductility of the alloys decrease, and both the compressive strength and elastic strain limits increase slightly.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ti-based icosahedral quasicrystalline phase (I-phase) exhibited excellent hydrogen storage property for special structure. Unfortunately, the application as the negative electrode material of the nickel-metal hydride batteries was limited due to the poor electrochemical kinetics. Meanwhile, rare-earth element was beneficial to the electrochemical properties of Ti, Zr-based alloy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mg-5Y-3Nd-0.6Zr-xGd (x = 0, 2 and 4 wt.%) alloys were prepared by metal mould casting technique, the structures and mechanical properties were investigated. The alloys were mainly composed of alpha-Mg solid solution and beta-phase. With increasing Gd content, Mg5RE phase increased and the grain was refined. The Mg-5Y-3Nd-2Gd-0.6Zr alloy exhibited highest ultimate tensile strength and Mg-5Y-3Nd-0.6Zr alloy showed highest yield strength at room temperature. With increasing amount of Gd, the thermal resistance was improved. The Mg-5Y-3Nd-4Gd-0.6Zr alloy exhibited highest UTS and YS at 250 degrees C, they were about 1.27 times higher than those of Gd-free alloy, which was mainly attributed to the increase of the beta-phase and Mg5RE strengthening phase.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ti45Zr35Ni20-xPdx (x = 0, 1, 3, 5 and 7, at%) alloys were prepared by melt-spinning. The phase structure and electrochemical hydrogen storage performances of melt-spun alloys were investigated. The melt-spun alloys were icosahedral quasicrystalline phase, and the quasi-lattice constant increased with increasing x value. The maximum discharge capacity of alloy electrodes increased from 79 mAh/g (x = 0) to 148 mAh/g (x = 7). High-rate dis-chargeability and cycling stability were also enhanced with the increase of Pd content. The improvement in the electrochemical hydrogen storage characteristics may be ascribed to better electrochemical activity and oxidation resistance of Pd than that of Ni.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ti44Zr32Ni22Cu2 and Ti41Zr29Ni28Cu2 alloys were prepared by the melt-spinning method. The phase structure was analyzed by X-ray diffraction, and the electrochemical performances of the melt-spun alloys were investigated. The results indicated that the Ti44Zr32Ni22Cu2 alloy was composed of the icosahedral quasicrystals and amorphous phases, and the Ti41Zr29Ni28Cu2 alloy comprised icosahedral quasicrystals, amorphous, and Laves phases. The maximum discharge capacity was 141 mAh/g for the Ti44Zr32Ni22Cu2 alloy and 181 mAh/g for the Ti41Zr29Ni28Cu2 alloy, respectively. The Ti41Zr29Ni28Cu2 alloy also showed a better high-rate dischargeabifity and cycling stability. The better electrochemical properties should be ascribed to the high content of Ni, which was beneficial to the electrochemical kinetic properties and made the alloy more resistant to oxidation, as well as to the Laves phase in the Ti41Zr29Ni28Cu2 alloy, which could work as the electro-catalyst and the micro-current collector.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pressure variations of the superconducting transition temperature Ic of a series of amorphous NixZr 1 OO-x alloys have been studied under quasmydrostatic pressures upto 8 G Pa. For amorphous samples having Ni-concentration less than 40%, i)Tc/dP is positive in sign and it decreases non linearly with increase in I. whereasdTcldP is negative in sign for Ni concentration of 45%. Comparison with the Hall coefficient (I) and the thermoelectric power (2) results for the same amorphous alloys leads to the conclusion that s-d hybridization nature of the d-band (Nil plays a central role in the sign reversal behaviour. Application of pressures greater than 2 G Pa to Ni20ZrgO led to the formation of a new phase, w-Zr. which retains its form after the pressure is released.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper investigated the microstructural characterization and mechanical properties of Mg-Zr-Ca alloys prepared by hot-extrusion for potential use in biomedical applications. Mg-Zr-Ca alloys were fabricated by commercial pure Mg (99.9%), Ca (99.9%), and master Mg-33% Zr alloy (mass%). The microstructural characterization of the hot-extruded Mg-Zr-Ca alloys was examined by X-ray diffraction analysis and optical microscopy, and the mechanical properties were determined from tensile tests. The experimental results indicate that the hot-extruded Mg-Zr-Ca alloys with 1 mass% Ca are composed of one single phase and those alloys with 2 mass% Ca consist of both Mg2Ca and α phase. The hot-extruded Mg-Zr-Ca alloys exhibit equiaxed granular microstructures and the hot-extrusion process can effectively increase both the tensile strength and ductility of Mg-Zr-Ca alloys. The hot-extruded Mg-1Zr-1Ca alloy (mass%) exhibits the highest strength and best ductility among all the alloys, and has much higher strength than the human bone, suggesting that it has a great potential to be a good candidate for biomedical application.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mg–Zr–Ca alloys were developed for new biodegradable bone implant materials. The microstructure and mechanical property of the Mg–xZr–yCa [x=0·5, 1·0% and y=1·0, 2·0% (wt-% hereafter)] alloys were characterised by optical microscopy, compressive and hardness tests. The in vitro cytotoxicity of the alloys was assessed using osteoblast-like SaOS2 cells. The corrosion behaviour of these alloys was evaluated by soaking the alloys in simulated body fluid (SBF) and modified minimum essential medium (MMEM). Results indicated that the mechanical properties of the Mg–Zr–Ca are in the range of the mechanical properties of natural bone. The corrosion rate and biocompatibility decreases with the increase in the Ca content in the Mg–Zr–Ca alloys. The solutions of SBF and MMEM with the immersion of the Mg–Zr–Ca alloys show strong alkalisation. The Zr addition to the Mg–Zr–Ca alloys leads to an increase in the corrosion resistance, compressive strength and the ductility of the alloys, and a decrease in the elastic modulus of the Mg–Zr–Ca alloys.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper investigated the microstructures and compressive properties of hot-rolled Mg-Zr-Ca alloys for biomedical applications. The microstructures of the Mg-Zr-Ca alloys were examined by X-ray diffraction analysis and optical microscopy, and the compressive properties were determined from compressive tests. The experimental results indicate that the hot-rolled Mg-Zr-Ca alloys with 1% Ca are composed of one single α phase and those alloys with 2% Ca consist of both Mg2Ca and α phase. The hot-rolled Mg-Zr-Ca alloys exhibit typical elongated microstructures with obvious fibrous stripe, and have much higher compressive strength and lower compressive modulus than pure Mg. All the studied alloys have much higher compressive yield strength than the human bone (90~140 MPa) and comparable modulus with the human bone, suggesting that they have a great potential to be good candidates for biomedical applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Novel Mg–Zr–Sr alloys have recently been developed for use as biodegradable implant materials. The Mg–Zr–Sr alloys were prepared by diluting Mg–Zr and Mg–Sr master alloys with pure Mg. The impact of Zr and Sr on the mechanical and biological properties has been thoroughly examined. The microstructures and mechanical properties of the alloys were characterized using optical microscopy, X-ray diffraction and compressive tests. The corrosion resistance was evaluated by electrochemical analysis and hydrogen evolution measurement. The in vitro biocompatibility was assessed using osteoblast-like SaOS2 cells and MTS and haemolysis tests. In vivo bone formation and biodegradability were studied in a rabbit model. The results indicated that both Zr and Sr are excellent candidates for Mg alloying elements in manufacturing biodegradable Mg alloy implants. Zr addition refined the grain size, improved the ductility, smoothed the grain boundaries and enhanced the corrosion resistance of Mg alloys. Sr addition led to an increase in compressive strength, better in vitro biocompatibility, and significantly higher bone formation in vivo. This study demonstrated that Mg–xZr–ySr alloys with x and y ⩽5 wt.% would make excellent biodegradable implant materials for load-bearing applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The microstructures, mechanical properties, corrosion behaviour and biocompatibility of the Mg-Zr-Ca alloys have been investigated for potential use in orthopaedic applications. The microstructures of the alloys were examined using X-ray diffraction analysis, optical microscopy and scanning electron microscopy. The mechanical properties of Mg-Zr-Ca alloys were determined from compressive tests. The corrosion behaviour has been investigated using an immersion test and electrochemical measurement. The biocompatibility was evaluated by cell growth factor using osteoblast-like SaOS2 cell. The experimental results indicate that the hot-rolled Mg-Zr-Ca alloys exhibit much finer microstructures than the as-cast Mg-Zr-Ca alloys which show coarse microstructures. The compressive strength of the hot-rolled alloys is much higher than that of the as-cast alloys and the human bone, which would offer appropriate mechanical properties for orthopaedic applications. The corrosion resistance of the alloys can be enhanced significantly by hot-rolling process. Hot-rolled Mg-0.5Zr-1Ca alloy (wt %) exhibits the lowest corrosion rate among all alloys studied in this paper. The hot-rolled Mg-0.5Zr-1Ca and Mg-1Zr-1Ca alloys exhibit better biocompatibility than other studied alloys and possess advanced mechanical properties, corrosion resistance and biocompatibility, suggesting that they have a great potential to be good candidates for orthopaedic applications. © 2012 Springer Science+Business Media New York.