881 resultados para Yersinia pseudotuberculosis Infections
Resumo:
The FOB-3, anew type fiber optic biosensor, is designed to rapidly detect a variety of biological agents or analytes with better stability, sensitivity and specificity. In order to detect Y. Pestis, a sandwich immunoassay was developed by using the purified antibody against antigen FI immobilized on polystyrene probes as the capture antibody and the monoclonal antibody-Cy5 conjugate as the detector. After a series of optimization for the stability, sensitivity and specificity of the FOB-3, 50-1000 ng/ml of antigen FI and 6 x 10(1)-6 x 10(7) CFU/ml Y. pestis could be detected constantly in about 20 min, and Y pestis could be detected specifically from Y. pseudotuberculosis, Y. enterocolitica, B. anthracis and E. coli. Then, 39 blind samples, including 27 tissues of mice infected with Y pestis and 12 tissues of healthy mice as negative control, were detected with the FOB-3. 92.6% infected tissues were identified from the tissues of healthy mice and the tissues containing more than 100 CFU/ml bacteria could be detected by the biosensor. The results demonstrated the feasibility of the FOB-3 as an effective method to detect Y. pestis rapidly and directly from the infected animal specimens with the advantage of portability, simple-operation as well as high sensitivity and specificity. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Uma vez que C. pseudotuberculosis é o agente etiológico de processos infecciosos em animais caprinos e ovinos e que também pode ser isolado de processos infecciosos em seres humanos as investigações direcionadas para a espécie em questão são necessárias, visto que a escassez de dados epidemiológicos e de conhecimento relativo ao comportamento do microrganismo em hospedeiros animais e humanos em nosso país dificulta o diagnóstico laboratorial da espécie, à semelhança do observado com outra espécie de transmissão zoonótica, o C. ulcerans. Uma preocupação adicional é o fato da espécie em questão também ser capaz de albergar bacteriófagos codificadores da toxina diftérica, representando uma ameaça à circulação dos bacteriófagos. Assim, o presente estudo tem como objetivo geral analisar as características fenotípicas e genotípicas de amostras de C. pseudotuberculosis. Neste sentido, foram propostos os seguintes objetivos: Avaliar as características bioquímicas das amostras através de testes bioquímicos convencionais; avaliar as características bioquímicas das amostras utilizando o sistema semi-automatizado API Coryne; diferenciar amostras de C. pseudotuberculosis de C. ulcerans utilizando a técnica de PCR multiplex; pesquisar a presença de gene tox. Os resultados demonstraram que amostras de C. diphtheriae, C. ulcerans e C. pseudotuberculosis podem ser caracterizadas por métodos bioquímicos convencionais e por taxonomia numérica (API Coryne System). C. ulcerans e C. pseudotuberculosis, com potencial de circulação zoonótica, da mesma forma que C. diphtheriae são capazes de albergar o gene da toxina diftérica. A reação m-PCR foi capaz de discernir as amostras de C. diphtheriae, C. ulcerans e C. pseudotuberculosis e ainda definir o potencial das amostras em produzir a toxina diftérica. Os dados enfatizam a necessidade da técnica multiplex PCR para o diagnostico e para o controle de espécies associadas a quadros de difteria em populações humana.
Resumo:
Yersiniosis is an acute or chronic enteric zoonosis caused by enteropathogenic Yersinia species. Although yersiniosis is predominantly associated with gastroenteric forms of infection, extraintestinal forms are often reported from the elderly or patients with predisposing factors. Yersiniosis is often reported in countries with cold and mild climates (Northern and Central Europe, New Zealand and North of Russian Federation). The Irish Health Protection Surveillance Centre (HPSC) currently records only 3-7 notified cases of yersiniosis per year. At the same time pathogenic Yersinia enterocolitica is recovered from pigs (main source of pathogenic Y. enterocolitica) at the levels similar to that observed in Yersinia endemic countries. Introduction of Yersinia selective culture procedures may increase Yersinia isolation rates. To establish whether the small number of notifications of human disease was an underestimate due to lack of specific selective culture for Yersinia we carried out a prospective culture study of faecal samples from outpatients with diarrhoea, with additional culture of appendix and throat swabs. Higher levels of anti-Yersinia seroprevalence than yersiniosis notification rates in endemic countries suggests that most yersiniosis cases are unrecognised by culture. Subsequently, in addition to a prospective culture study of clinical specimens, we carried out serological screening of Irish blood donors and environmental screening of human sewage. Pathogenic Yersinia strains were not isolated from 1,189 faeces samples, nor from 297 throat swabs, or 23 appendix swabs. This suggested that current low notification rates in Ireland are not due to the lack of specific Yersinia culture procedures. Molecular screening detected a wider variety of Y. enterocolitica-specific targets in pig slurry than in human sewage. A serological survey for antibodies against Yersinia YOP (Yersinia Outer Proteins) proteins in Irish blood donors found antibodies in 25%, with an age-related trend to increased seropositivity, compatible with the hypothesis that yersiniosis may have been more prevalent in Ireland in the recent past. Y. enterocolitica is a heterogeneous group of microorganisms that comprises strains with different degree of pathogenicity. Although non-pathogenic Y. enterocolitica lack conventional virulence factors, these strains can be isolated from patients with diarrhoea. Insecticidal Toxin Complex (ITC) and Cytolethal Distending Toxins can potentially contribute to the virulence of non-pathogenic Y. enterocolitica in the absence of other virulence factors. We compared distribution of ITC and CDT loci among pathogenic and non-pathogenic Y. enterocolitica. Additionally, to demonstrate potential pathogenicity of non-pathogenic Y. enterocolitica we compared their virulence towards Galleria mellonella larvae (a non-mammalian model of human bacterial infections) with the virulence of highly and mildly pathogenic Y. enterocolitica strains. Surprisingly, virulence of pathogenic and non-pathogenic Y. enterocolitica in Galleria mellonella larvae observed at 37°C did not correlate with their pathogenic potential towards humans. Comparative phylogenomic analysis detects predicted coding sequences (CDSs) that define host-pathogen interactions and hence providing insights into molecular evolution of bacterial virulence. Comparative phylogenomic analysis of microarray data generated in Y. enterocolitica strains isolated in the Great Britain from humans with diarrhoea and domestic animals revealed high genetic heterogeneity of these species. Because of the extensive human, animal and food exchanges between the UK and Ireland the objective of this study was to gain further insight into genetic heterogeneity and relationships among clinical and non-clinical Y. enterocolitica strains of various pathogenic potential isolated in Ireland and Great Britain. No evidence of direct transfer of strains between the two countries was found.
Resumo:
Pathogenic bacteria may modify their surface to evade the host innate immune response. Yersinia enterocolitica modulates its lipopolysaccharide (LPS) lipid A structure, and the key regulatory signal is temperature. At 21°C, lipid A is hexa-acylated and may be modified with aminoarabinose or palmitate. At 37°C, Y. enterocolitica expresses a tetra-acylated lipid A consistent with the 3'-O-deacylation of the molecule. In this work, by combining genetic and mass spectrometric analysis, we establish that Y. enterocolitica encodes a lipid A deacylase, LpxR, responsible for the lipid A structure observed at 37°C. Western blot analyses indicate that LpxR exhibits latency at 21°C, deacylation of lipid A is not observed despite the expression of LpxR in the membrane. Aminoarabinose-modified lipid A is involved in the latency. 3-D modelling, docking and site-directed mutagenesis experiments showed that LpxR D31 reduces the active site cavity volume so that aminoarabinose containing Kdo(2)-lipid A cannot be accommodated and, therefore, not deacylated. Our data revealed that the expression of lpxR is negatively controlled by RovA and PhoPQ which are necessary for the lipid A modification with aminoarabinose. Next, we investigated the role of lipid A structural plasticity conferred by LpxR on the expression/function of Y. enterocolitica virulence factors. We present evidence that motility and invasion of eukaryotic cells were reduced in the lpxR mutant grown at 21°C. Mechanistically, our data revealed that the expressions of flhDC and rovA, regulators controlling the flagellar regulon and invasin respectively, were down-regulated in the mutant. In contrast, the levels of the virulence plasmid (pYV)-encoded virulence factors Yops and YadA were not affected in the lpxR mutant. Finally, we establish that the low inflammatory response associated to Y. enterocolitica infections is the sum of the anti-inflammatory action exerted by pYV-encoded YopP and the reduced activation of the LPS receptor by a LpxR-dependent deacylated LPS.
Resumo:
Antimicrobial peptides (APs) belong to the arsenal of weapons of the innate immune system against infections. In the case of gram-negative bacteria, APs interact with the anionic lipid A moiety of the lipopolysaccharide (LPS). In yersiniae most virulence factors are temperature regulated. Studies from our laboratory demonstrated that Yersinia enterocolitica is more susceptible to polymyxin B, a model AP, when grown at 37°C than at 22°C (J. A. Bengoechea, R. Díaz, and I. Moriyón, Infect. Immun. 64:4891-4899, 1996), and here we have extended this observation to other APs, not structurally related to polymyxin B. Mechanistically, we demonstrate that the lipid A modifications with aminoarabinose and palmitate are downregulated at 37°C and that they contribute to AP resistance together with the LPS O-polysaccharide. Bacterial loads of lipid A mutants in Peyer's patches, liver, and spleen of orogastrically infected mice were lower than those of the wild-type strain at 3 and 7 days postinfection. PhoPQ and PmrAB two-component systems govern the expression of the loci required to modify lipid A with aminoarabinose and palmitate, and their expressions are also temperature regulated. Our findings support the notion that the temperature-dependent regulation of loci controlling lipid A modifications could be explained by H-NS-dependent negative regulation alleviated by RovA. In turn, our data also demonstrate that PhoPQ and PmrAB regulate positively the expression of rovA, the effect of PhoPQ being more important. However, rovA expression reached wild-type levels in the phoPQ pmrAB mutant background, hence indicating the existence of an unknown regulatory network controlling rovA expression in this background.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Molecular typing and virulence markers were used to evaluate the genetic profiles and virulence potential of 106 Yersinia enterocolitica strains. of these strains, 71 were bio-serotype 4/O: 3, isolated from human and animal clinical material, and 35 were of biotype 1 A or 2 and of diverse serotypes, isolated from food in Brazil between 1968 and 2000. Drug resistance was also investigated. All the strains were resistant to three or more drugs. The isolates showed a virulence-related phenotype in the aesculin, pyrazinamidase and salicin tests, except for the food isolates, only two of which were positive for these tests. For the other phenotypic virulence determinants (autoagglutination, Ca++ dependence and Congo red absorption), the strains showed a diverse behaviour. The inv, ail and ystA genes were detected in all human and animal strains, while all the food isolates were positive for inv, and 3% of them positive for ail and ystA. The presence of virF was variable in the three groups of strains. The strains were better discriminated by PFGE than by enterobacterial repetitive intergenic consensus PCR (ERIC-PCR). A higher genomic similarity was observed among the 4/O: 3 strains, isolated from human and animal isolates, than among the food strains, with the exception of two food strains possessing the virulence genes and grouped close to the 4/O: 3 strains by ERIC-PCR. Unusually, the results revealed the virulence potential of a bio-serotype 1 A/O: 10 strain, suggesting that food contaminated with Y. enterocolitica biotype 1 A may cause infection. This also suggests that ERIC-PCR may be used as a tool to reveal clues about the virulence potential of Y. enterocolitica strains. Furthermore, the results also support the hypothesis that animals may act as reservoirs of Y. enterocolitica for human infections in Brazil, an epidemiological aspect that has not been investigated in this country, confirming data from other parts of the world.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A four-year-old male goat with a history of neurological disorder was euthanized. It presented uncommon nodules in the brain and lungs associated with multiple abscesses, predominantly in the spleen and liver. Histological examination of brain and lung sections revealed yeast forms confirmed to be Cryptococcus gattii after a combination of isolation and polymerase chain reaction (PCR) procedures. Moreover, Corynebacterium pseudotuberculosis infection was diagnosed by PCR of samples from the lung, spleen and liver. The present report highlights the rare concurrent infection of C. gatti and C. pseudotuberculosis in an adult goat from São Paulo state, Brazil, and indicates the necessity of surveillance in the treatment of goats with atypical pulmonary infections associated with neurological disorders.