898 resultados para XML, Information, Retrieval, Query, Language


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Document ranking is an important process in information retrieval (IR). It presents retrieved documents in an order of their estimated degrees of relevance to query. Traditional document ranking methods are mostly based on the similarity computations between documents and query. In this paper we argue that the similarity-based document ranking is insufficient in some cases. There are two reasons. Firstly it is about the increased information variety. There are far too many different types documents available now for user to search. The second is about the users variety. In many cases user may want to retrieve documents that are not only similar but also general or broad regarding a certain topic. This is particularly the case in some domains such as bio-medical IR. In this paper we propose a novel approach to re-rank the retrieved documents by incorporating the similarity with their generality. By an ontology-based analysis on the semantic cohesion of text, document generality can be quantified. The retrieved documents are then re-ranked by their combined scores of similarity and the closeness of documents’ generality to the query’s. Our experiments have shown an encouraging performance on a large bio-medical document collection, OHSUMED, containing 348,566 medical journal references and 101 test queries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a text mining method called LRD (latent relation discovery), which extends the traditional vector space model of document representation in order to improve information retrieval (IR) on documents and document clustering. Our LRD method extracts terms and entities, such as person, organization, or project names, and discovers relationships between them by taking into account their co-occurrence in textual corpora. Given a target entity, LRD discovers other entities closely related to the target effectively and efficiently. With respect to such relatedness, a measure of relation strength between entities is defined. LRD uses relation strength to enhance the vector space model, and uses the enhanced vector space model for query based IR on documents and clustering documents in order to discover complex relationships among terms and entities. Our experiments on a standard dataset for query based IR shows that our LRD method performed significantly better than traditional vector space model and other five standard statistical methods for vector expansion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Similar to Genetic algorithm, Evolution strategy is a process of continuous reproduction, trial and selection. Each new generation is an improvement on the one that went before. This paper presents two different proposals based on the vector space model (VSM) as a traditional model in information Retrieval (TIR). The first uses evolution strategy (ES). The second uses the document centroid (DC) in query expansion technique. Then the results are compared; it was noticed that ES technique is more efficient than the other methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper addresses issues related to the design of a graphical query mechanism that can act as an interface to any object-oriented database system (OODBS), in general, and the object model of ODMG 2.0, in particular. In the paper a brief literature survey of related work is given, and an analysis methodology that allows the evaluation of such languages is proposed. Moreover, the user's view level of a new graphical query language, namely GOQL (Graphical Object Query Language), for ODMG 2.0 is presented. The user's view level provides a graphical schema that does not contain any of the perplexing details of an object-oriented database schema, and it also provides a foundation for a graphical interface that can support ad-hoc queries for object-oriented database applications. We illustrate, using an example, the user's view level of GOQL

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Information Retrieval is an important albeit imperfect component of information technologies. A problem of insufficient diversity of retrieved documents is one of the primary issues studied in this research. This study shows that this problem leads to a decrease of precision and recall, traditional measures of information retrieval effectiveness. This thesis presents an adaptive IR system based on the theory of adaptive dual control. The aim of the approach is the optimization of retrieval precision after all feedback has been issued. This is done by increasing the diversity of retrieved documents. This study shows that the value of recall reflects this diversity. The Probability Ranking Principle is viewed in the literature as the “bedrock” of current probabilistic Information Retrieval theory. Neither the proposed approach nor other methods of diversification of retrieved documents from the literature conform to this principle. This study shows by counterexample that the Probability Ranking Principle does not in general lead to optimal precision in a search session with feedback (for which it may not have been designed but is actively used). Retrieval precision of the search session should be optimized with a multistage stochastic programming model to accomplish the aim. However, such models are computationally intractable. Therefore, approximate linear multistage stochastic programming models are derived in this study, where the multistage improvement of the probability distribution is modelled using the proposed feedback correctness method. The proposed optimization models are based on several assumptions, starting with the assumption that Information Retrieval is conducted in units of topics. The use of clusters is the primary reasons why a new method of probability estimation is proposed. The adaptive dual control of topic-based IR system was evaluated in a series of experiments conducted on the Reuters, Wikipedia and TREC collections of documents. The Wikipedia experiment revealed that the dual control feedback mechanism improves precision and S-recall when all the underlying assumptions are satisfied. In the TREC experiment, this feedback mechanism was compared to a state-of-the-art adaptive IR system based on BM-25 term weighting and the Rocchio relevance feedback algorithm. The baseline system exhibited better effectiveness than the cluster-based optimization model of ADTIR. The main reason for this was insufficient quality of the generated clusters in the TREC collection that violated the underlying assumption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a framework for evaluating information retrieval of medical records. We use the BLULab corpus, a large collection of real-world de-identified medical records. The collection has been hand coded by clinical terminol- ogists using the ICD-9 medical classification system. The ICD codes are used to devise queries and relevance judge- ments for this collection. Results of initial test runs using a baseline IR system are provided. Queries and relevance judgements are online to aid further research in medical IR. Please visit: http://koopman.id.au/med_eval.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RÉSUMÉ. La prise en compte des troubles de la communication dans l’utilisation des systèmes de recherche d’information tels qu’on peut en trouver sur le Web est généralement réalisée par des interfaces utilisant des modalités n’impliquant pas la lecture et l’écriture. Peu d’applications existent pour aider l’utilisateur en difficulté dans la modalité textuelle. Nous proposons la prise en compte de la conscience phonologique pour assister l’utilisateur en difficulté d’écriture de requêtes (dysorthographie) ou de lecture de documents (dyslexie). En premier lieu un système de réécriture et d’interprétation des requêtes entrées au clavier par l’utilisateur est proposé : en s’appuyant sur les causes de la dysorthographie et sur les exemples à notre disposition, il est apparu qu’un système combinant une approche éditoriale (type correcteur orthographique) et une approche orale (système de transcription automatique) était plus approprié. En second lieu une méthode d’apprentissage automatique utilise des critères spécifiques , tels que la cohésion grapho-phonémique, pour estimer la lisibilité d’une phrase, puis d’un texte. ABSTRACT. Most applications intend to help disabled users in the information retrieval process by proposing non-textual modalities. This paper introduces specific parameters linked to phonological awareness in the textual modality. This will enhance the ability of systems to deal with orthographic issues and with the adaptation of results to the reader when for example the reader is dyslexic. We propose a phonology based sentence level rewriting system that combines spelling correction, speech synthesis and automatic speech recognition. This has been evaluated on a corpus of questions we get from dyslexic children. We propose a specific sentence readability measure that involves phonetic parameters such as grapho-phonemic cohesion. This has been learned on a corpus of reading time of sentences read by dyslexic children.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In information retrieval, a user's query is often not a complete representation of their real information need. The user's information need is a cognitive construction, however the use of cognitive models to perform query expansion have had little study. In this paper, we present a cognitively motivated query expansion technique that uses semantic features for use in ad hoc retrieval. This model is evaluated against a state-of-the-art query expansion technique. The results show our approach provides significant improvements in retrieval effectiveness for the TREC data sets tested.