927 resultados para XANTHENE DYES
Resumo:
Polymer optical fibers (POFs) doped with organic dyes can be used to make efficient lasers and amplifiers due to the high gains achievable in short distances. This paper analyzes the peculiarities of light amplification in POFs through some experimental data and a computational model capable of carrying out both power and spectral analyses. We investigate the emission spectral shifts and widths and on the optimum signal wavelength and pump power as functions of the fiber length, the fiber numerical aperture and the radial distribution of the dopant. Analyses for both step-index and graded-index POFs have been done.
Resumo:
The high-density holographic recording parameters of a novel two dyes-sensitized photopolymer under different exposure wavelengths are studied. The results show that the maximum diffraction efficiency, exposure sensitivity, maximum refraction index modulation, dynamic range, and the exposure time constant increases with the increase of the exposure wavelength. The analysis indicates that the scattering has an important role in the forming of the holographic grating. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
TiO2/ormosil films doped with laser dyes have been prepared by the sol-gel method. Spectroscopic properties of the entrapped dyes are studied by the absorption and emission techniques. The results indicate that the absorption and fluorescence spectra of kiton red depend strongly on the properties of the ormosil matrices. The heat-treatment of the kiton red-doped film obviously leads to the increasing fluorescence intensity and the largest fluorescence intensity is obtained after heat-treatment of 150 degrees C for 2 h. However, the fluorescence intensity of the rhodamine 6G-doped film decreases with the increase of the heat-treatment temperature. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In low molar mass organosiloxane liquid-crystal materials the siloxane moieties micro-separate and aggregate in planes that could be regarded as an effective or virtual two-dimensional polymer backbone. We show that if a siloxane moiety is attached to a dichroic dye molecule, the micro-segregation of the siloxane moieties makes it possible to include a high concentration of the guest dye (more than 50%) in a host organosiloxane solution. This effect, combined with the temperature independent tilt angles achievable with ferroelectric organosiloxane liquid crystals, provide an ideal material for high-contrast surface-stabilised ferroelectric display devices. We present dyed ferroelectric materials with a temperature independent tilt angle greater than 42 degrees, a wide (room temperature to over 100°C) mesomorphic temperature range and a response time shorter than 500μs in the dye guest host mode.
Resumo:
The photocatalytic degradation performance of photocatalysts TiO2 supported on 13-X, Na-Y, 4A zeolites with different loading content was evaluated using the photocatalytic oxidation of dyes direct fast scarlet 4BS and acid red 3B in aqueous medium. The results showed that the best reaction dosage of TiO2-zeolite catalysts is about 2 g/l and the photocatalytic kinetics follows first order for all supported catalysts. The photocatalytic activity order of the three series catalysts is 13X type >Y type >4A type. The physical state of titanium dioxide on the supports is evaluated by X-ray photoelectron spectra (XPS), powder X-ray diffraction (XRD), BET, and FTIR. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
We studied the memory effect in the devices consisting of dye-doped N, N'-di(naphthalene-1-yl)-N, N'-diphenyl-benzidine sandwiched between indium-tin oxide and Ag electrodes. It was found that the on/off current ratio was greatly improved by the doped fluorescent dyes compared with nondoping devices. A mechanism of charge trapping was demonstrated to explain the improvement of the memory effect. For the off state, the conduction process is dominated by the trapping current, which is a characteristic of the space-charge limited current, whereas the on state is dominated by the detrapping current, and interpreted by Poole-Frenkel emission.
Low-temperature relaxation of polymers around doped dyes studied by persistent spectral hole burning
Resumo:
Persistent spectral hole burning spectroscopy is applied to evaluate the low-temperature relaxation around the dye molecules doped in several types of polymers. The doped dye is tetraphenylporphine, and the measured polymers are vinyl polymers and main chain aromatic polymers. The changes of microscopic environments around the dye are evaluated from the changes in the hole profiles during temperature cycling experiments. The relaxation behavior of the polymers is discussed in relation to their chemical structures. (C) 1999 John Wiley & Sons, Inc.
Resumo:
A method of preparation of stable, homogeneous and controlled thickness TiO2 film through hydrolysis of Ti(OC4H(9))(4) is introduced in detail. The structure and property of the film have been investigated by means of SEM and FT-IR techniques. The strong quenching effect between sensitizing dyes and TiO2 film is observed in their fluorescence spectra.