856 resultados para Wrought Mg-Zn-RE alloys
Resumo:
The discovery of a solid exhibiting m 3 5 point group symmetry by Shechtman et. al. (l) in a rapidly solidified Al-14at%Mn alloy has activated intensive studies of a new class of solids, termed as quasicrystals (2). While the original discovery reported the existence of quasicrystals in AI-Mn. AI-Fe and AI-Cr alloys, subsequent work has revealed their existence in Mg-Zn-Al(3,4), Mg-A]-Cu(5), AI-Mn-Si(6) and Ti-Ni-V(7) alloys (Table l).
Resumo:
Mg and its alloys become natural biomaterials as the elemental Mg is found in the human body in abundance and their mechanical properties being akin to the natural bone as well as due to their inherent bioabsorbable/bioresorbable property. This paper discusses the development of new Mg alloys and their corrosion characteristics in detail. The latest advancements in coating of Mg alloys to control their degradation rate are also reviewed along with the future challenges that need to be addressed.
Resumo:
利用金属型铸造制备了Mg-5Al-0.3Mn-xRE (x = 0~4, wt%,RE = Ce, Nd, Sm, Y和(CeLa)混合稀土)系列合金,研究了铸态合金的组织和力学性能。利用轧制和挤压技术对优化出的合金进行了变形加工处理,并研究了合金加工后的组织和力学性能。 对于铸态合金,稀土元素不仅可以细化合金的晶粒,而且形成不同类型的Al-RE化合物,含Ce的合金中生成Al11Ce3相,含Nd或Sm的合金中,主要生成Al11Nd3 (Al11Sm3)相和少量的Al2Nd (Al2Sm)相,含Y的合金中生成Al2Y相。另外,添加稀土可以改变Mg17Al12相的形貌,使其变得更加细小、弥散。添加适量的稀土可以明显提高铸态合金在室温和150℃下的力学性能,Mg-5Al-0.3Mn-1.5Ce, Mg-5Al-0.3Mn-2Nd和Mg-5Al-0.3Mn-2Sm合金在各自的体系中具有最佳的综合力学性能。合金力学性能提高的主要原因是细晶强化、Al-RE化合物第二相强化以及减弱Mg17Al12相对合金高温力学性能的不利影响。 对Mg-5Al-0.3Mn-(1.0, 1.5, 2.0)Ce,Mg-5Al-0.3Mn-2Nd,Mg-5Al-0.3Mn-1.5(CeLa)和Mg-5Al-0.3Mn-3Y合金在300-400℃下进行了热轧制或挤压变形,与铸态合金相比,轧制和挤压合金具有更高的力学性能。轧制合金的室温抗拉强度为290-340 MPa,较铸态合金提高约50%,屈服强度约为210-260 MPa,较铸态合金提高约2倍。挤压态合金的抗拉强度为260-270 MPa,屈服强度为160-190MPa,伸长率为20-22%;150℃的力学性能也得到了明显改善。 结合热力学计算、合金化元素之间的电负性差、化合物相的生成焓数据以及相图计算,阐述了稀土化合物相的生成机制,稀土元素与Al元素之间的电负性差大于其与Mg之间的电负性差,且Al-RE相的生成焓远低于Mg-RE和Mg-Al相的生成焓,因此在Mg-Al合金中加入RE后,RE优先与Al形成Al-RE化合物。从晶粒细化、化合物强化相的生成和演变、变形加工处理的位错交互作用等方面讨论了合金的强化机制,认为细晶强化、第二相强化及形变强化是提高合金力学性能的主要机制。
Resumo:
Microstructure and mechanical properties of peak-aged Mg-4.5Zn-xGd (x=0, 0.5, 1.0 and 1.5 wt.%) alloys have been investigated. The results showed that the grain size of the alloys was refined gradually with increasing Gd. Mg5Gd and Mg3Gd2Zn3 phases were found in the Gd-containing alloys. The strengths were greatly improved with Gd additions, and the highest strength level was obtained in the Mg-4.5Zn-1.5Gd alloy, in which the ultimate tensile strength and yield strength were 231 MPa and 113 MPa, respectively.
Resumo:
Mg-4Al-0.4Mn-xPr (x = 1, 2, 4 and 6 wt.%) magnesium alloys were prepared successfully by the high-pressure die-casting technique. The microstructures, mechanical properties, corrosion behavior as well as strengthening mechanism were investigated. The die-cast alloys were mainly composed of small equiaxed dendrites and the matrix. The fine rigid skin region was related to the high cooling rate and the aggregation of alloying elements, such as Pr. With the Pr content increasing, the alpha-Mg grain sizes were reduced gradually and the amounts of the Al2Pr phase and All, Pr-3 phase which mainly concentrated along the grain boundaries were increased and the relative volume ratio of above two phases was changed. Considering the performance-price ratio, the Pr content added around 4 wt.% was suitable to obtain the optimal mechanical properties which can keep well until 200 degrees C as well as good corrosion resistance. The outstanding mechanical properties were mainly attributed to the rigid casting surface layer, grain refinement, grain boundary strengthening obtained by an amount of precipitates as well as solid solution strengthening.
Resumo:
The BaMA(10)O(17) (M = Be, Mg, Ca, Zn, Cd, Mn, Co, Li) system has been synthesized by solid state method and characterized by XRD. The results show that when M is Mg, Zn, Mn, Co, Li, there exists the structure of beta-Al2O3 for BaMAl10O17 system, and when M indicates Cd, beta-Al2O3 structure is formed accompanying alpha-Al2O3 phase, and when M represents Be and Ca, beta-Al2O3 structure cannot be formed. This demonstrates that the condition forming beta-Al2O3 structure compounds for the system BaMAl10O17 is 0.05nm < R-M < 0.09nm (R-M represents the radius of M). The thought that if a M ion can form a stable spinel structure there exsits a corresponding magnetoplumbite and beta-alumina structure is proposed for BaMAl10O17 system according to the experimental results. When M is Li, Be, Zn, Eu2+ activator produces an emission of nearly 450 nm with half height width about 50 nm, when M is Mn, there are simultaneously the emissions of Eu2+ and Mn2+ and the excitation energy of Eu2+ can transfer to Mn2+ in the host, when M is Cd, Eu2+ displays a double-emission band, which can be explained by the Jahn-Teller's effect. It is possible for the system BaMAl10O17 with M being Li, Be, Zn to become blue-emitting component in three colour lamp through further study.
Resumo:
MAGNESIUM ALLOYS have strong potential for weight reduction in a wide range of technical applications because of their low density compared to other structural metallic materials. Therefore, an extensive growth of magnesium alloys usage in the automobile sector is expected in the coming years to enhance the fuel efficiency through mass reduction. The drawback associated with the use of commercially cheaper Mg-Al based alloys, such as AZ91, AM60 and AM50 are their inferior creep properties above 100ºC due to the presence of discontinuous Mg17A112 phases at the grain boundaries. Although rare earth-based magnesium alloys show better mechanical properties, it is not economically viable to use these alloys in auto industries. Recently, many new Mg-Al based alloy systems have been developed for high temperature applications, which do not contain the Mg17Al12 phase. It has been proved that the addition of a high percentage of zinc (which depends upon the percentage of Al) to binary Mg-Al alloys also ensures the complete removal of the Mg17Al12 phase and hence exhibits superior high temperature properties.ZA84 alloy is one such system, which has 8%Zn in it (Mg-8Zn-4Al-0.2Mn, all are in wt %) and shows superior creep resistance compared to AZ and AM series alloys. These alloys are mostly used in die casting industries. However, there are certain large and heavy components, made up of this alloy by sand castings that show lower mechanical properties because of their coarse microstructure. Moreover, further improvement in their high temperature behaviour through microstructural modification is also an essential task to make this alloy suitable for the replacement of high strength aluminium alloys used in automobile industry. Grain refinement is an effective way to improve the tensile behaviour of engineering alloys. In fact, grain refinement of Mg-Al based alloys is well documented in literature. However, there is no grain refiner commercially available in the market for Mg-Al alloys. It is also reported in the literature that the microstructure of AZ91 alloy is modified through the minor elemental additions such as Sb, Si, Sr, Ca, etc., which enhance its high temperature properties because of the formation of new stable intermetallics. The same strategy can be used with the ZA84 alloy system to improve its high temperature properties further without sacrificing the other properties. The primary objective of the present research work, “Studies on grain refinement and alloying additions on the microstructure and mechanical properties of Mg-8Zn-4Al alloy” is twofold: 1. To investigate the role of individual and combined additions of Sb and Ca on the microstructure and mechanical properties of ZA84 alloy. 2. To synthesis a novel Mg-1wt%Al4C3 master alloy for grain refinement of ZA84 alloy and investigate its effects on mechanical properties.
Resumo:
The effect of iron on the grain refinement of high-purity Mg-3%Al and Mg-91%Al alloys has been investigated using anhydrous FeCl3 as an iron additive at 750degreesC in carbon-free aluminium titanite crucibles. It was shown that grain refinement was readily achievable for both alloys. Fe- and Al-rich intermetallic particles were observed in many magnesium grains. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
A trace of beryllium can lead to dramatic grain coarsening in Mg-Al alloys at normal cooling rates. It is, however, unclear whether this effect applies to aluminium-free magnesium alloys or not. This work shows that a trace of beryllium also causes considerable grain coarsening in Mg-Zn, Mg-Ca, Mg-Ce and Mg-Nd alloys and hinders grain refinement of magnesium alloys by zirconium as well. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Biomaterials have been used for more than a century in the human body to improve body functions and replace damaged tissues. Currently approved and commonly used metallic biomaterials such as, stainless steel, titanium, cobalt chromium and other alloys have been found to have adverse effects leading in some cases, to mechanical failure and rejection of the implant. The physical or chemical nature of the degradation products of some implants initiates an adverse foreign body reaction in the tissue. Some metallic implants remain as permanent fixtures, whereas others such as plates, screws and pins used to secure serious fractures are removed by a second surgical procedure after the tissue has healed sufficiently. However, repeat surgical procedures increase the cost of health care and the possibility of patient morbidity. This study focuses on the development of magnesium based biodegradable alloys/metal matrix composites (MMCs) for orthopedic and cardiovascular applications. The Mg alloys/MMCs possessed good mechanical properties and biocompatible properties. Nine different compositions of Mg alloys/MMCs were manufactured and surface treated. Their degradation behavior, ion leaching, wettability, morphology, cytotoxicity and mechanical properties were determined. Alloying with Zn, Ca, HA and Gd and surface treatment resulted in improved mechanical properties, corrosion resistance, reduced cytotoxicity, lower pH and hydrogen evolution. Anodization resulted in the formation of a distinct oxide layer (thickness 5-10 μm) as compared with that produced on mechanically polished samples (~20-50 nm) under ambient conditions. It is envisaged that the findings of this research will introduce a new class of Mg based biodegradable alloys/MMCs and the emergence of innovative cardiovascular and orthopedic implant devices.^
Resumo:
This study investigated the grain size dependence of mechanical properties and deformation mechanisms of microcrystalline (mc) and nanocrystalline (nc: grain size below 100 nm) Mg-5wt% Al alloys. The Hall-Petch relationship was investigated by both instrumented indentation tests and compression tests. The test results from the indentation tests and compression tests match well with each other. The breakdown of Hall-Petch relationship and the elevated strain rate sensitivity (SRS) of present Mg-5wt% Al alloys when the grain size was reduced below 58nm indicated the more significant role of GB mediated mechanisms in plastic deformation process. However, the relatively smaller SRS values compared to GB sliding and coble creep process suggested the plastic deformation in the current study is still dislocation mediated mechanism dominant.
Resumo:
The influence of 0.03 and 0.08 at. % Ag additions on the clustering of Zn atoms in an Al-4.4 at. % Zn alloy has been studied by resistometry. The effect of quenching and ageing temperatures shows that the ageing-ratio method of calculating the vacancy-solute atom binding energy is not applicable to these alloys. Zone-formation in Al-Zn is unaffected by Ag additions, but the zone-reversion process seems to be influenced. Apparent vacancy-formation energies in the binary and ternary alloys have been used to evaluate the v-Ag atom binding energy as 0.21 eV. It is proposed that, Ag and Zn being similar in size, the relative vacancy binding results from valency effects, and that in Al-Zn-Ag alloys clusters of Zn and Ag may form simultaneously, unaffected by the presence of each other. © 1970 Chapman and Hall Ltd.
Resumo:
The nucleation and growth mechanisms during high temperature oxidation of liquid Al-3% Mg and Al-3% Mg-3% Si alloys were studied with the aim of enhancing our understanding of a new composite fabrication process. The typical oxidation sequence consists of an initial event of rapid but brief oxidation, followed by an incubation period of limited oxide growth after which bulk Al2O3/Al composite forms. A duplex oxide layer, MgO (upper) and MgAl2O4 (lower), forms on the alloy surface during initial oxidation and incubation. The spinel layer remains next to the liquid alloy during bulk oxide growth and is the eventual repository for most of the magnesium in the original alloy. Metal microchannels developed during incubation continuously supply alloy through the composite to the reaction interface. During the growth process, a layered structure exists at the upper extremity of the composite, consisting of MgO at the top surface, MgAl2O4 (probably discontinuous), Al alloy, and finally the bulk Al2O3 composite containing microchannels of the alloy. The bulk oxide growth mechanism appears to involve continuous formation and dissolution of the Mg-rich oxides at the surface, diffusion of oxygen through the underlying liquid metal, and epitaxial growth of Al2O3 on the existing composite body. The roles of Mg and Si in the composite growth process are discussed.
Resumo:
The effect of strain rate, (epsilon) over dot, and temperature, T, on the tension-compression asymmetry (TCA) in a dilute and wrought Mg alloy, AM30, over a temperature range that covers both twin accommodated deformation (below 250 degrees C in compression) as well as dislocation-mediated plasticity (above 250 degrees C) has been investigated. For this purpose, uniaxial tension and compression tests were conducted at T ranging from 25 to 400 degrees C with (epsilon) over dot varying between 10(-2) and 10 s(-1). In most of the cases, the stress-strain responses in tension and compression are distinctly different; with compression responses `concaving upward,' due to {10 (1) over bar2} tensile twinning at lower plastic strains followed by slip and strain hardening at higher levels of deformation, for T below 250 degrees C. This results in significant levels of TCA at T < 250 degrees C, reducing substantially at high temperatures. At T=150 and 250 degrees C, high (epsilon) over dot leads to high TCA, in particular at T=250 degrees C and (epsilon) over dot=10 s(-1), suggesting that twin-mediated plastic deformation takes precedence at high rates of loading even at sufficiently high T. TCA becomes negligible at T=350 degrees C; however at T=400 degrees C, as (epsilon) over dot increases TCA gets higher. Microscopy of the deformed samples, carried out by using electron back-scattered diffraction (EBSD), suggests that at T > 250 degrees C dynamic recrystallization begins between accompanied by reduction in the twinned fraction that contributes to the decrease of the TCA.
Resumo:
Due to their high specific strength and low density, magnesium and magnesium-based alloys have gained great technological importance in recent years. However, their underlying hexagonal crystal structure furnishes Mg and its alloys with a complex mechanical behavior because of their comparably smaller number of energetically favorable slip systems. Besides the commonly studied slip mechanism, another way to accomplish general deformation is through the additional mechanism of deformation-induced twinning. The main aim of this thesis research is to develop an efficient continuum model to understand and ultimately predict the material response resulting from the interaction between these two mechanisms.
The constitutive model we present is based on variational constitutive updates of plastic slips and twin volume fractions and accounts for the related lattice reorientation mechanisms. The model is applied to single- and polycrystalline pure magnesium. We outline the finite-deformation plasticity model combining basal, pyramidal, and prismatic dislocation activity as well as a convexification based approach for deformation twinning. A comparison with experimental data from single-crystal tension-compression experiments validates the model and serves for parameter identification. The extension to polycrystals via both Taylor-type modeling and finite element simulations shows a characteristic stress-strain response that agrees well with experimental observations for polycrystalline magnesium. The presented continuum model does not aim to represent the full details of individual twin-dislocation interactions, yet it is sufficiently efficient to allow for finite element simulations while qualitatively capturing the underlying microstructural deformation mechanisms.