969 resultados para Wood-decaying fungi.
Resumo:
We present the results of a search for a new particle X produced in p (p) over bar collisions at root s- = 1.96 TeV and subsequently decaying to Z gamma. The search uses 0.3 fb(-1) of data collected with the DO detector at the Fermilab Tevatron Collider. We set limits on the production cross section times the branching fraction sigma(p (p) over bar -> X) x B(X -> Z gamma) that range from 0.4 to 3.5 pb at the 95% C.L. for X with invariant masses between 100 and 1000 GeV/c(2), over a wide range of X decay widths. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We have searched for a heavy resonance decaying into a Z+jet final state in p (p) over bar collisions at a center of mass energy of 1.96 TeV at the Fermilab Tevatron collider using the D0 detector. No indication for such a resonance was found in a data sample corresponding to an integrated luminosity of 370 pb(-1). We set upper limits on the cross section times branching fraction for heavy resonance production at the 95% C.L. as a function of the resonance mass and width. The limits are interpreted within the framework of a specific model of excited quark production.
Resumo:
lWe report on a search for second generation leptoquarks (LQ(2)) which decay into a muon plus quark in (p) over barp collisions at a center-of-mass energy of root s = 1.96 TeV in the DO detector using an integrated luminosity of about 300 pb(-1). No evidence for a leptoquark signal is observed and an upper bound on the product of the cross section for single leptoquark production times branching fraction into a quark and a muon was determined for second generation scalar leptoquaiks as a function of the leptoquark mass. This result has been combined with a previously published DO search for leptoquark pair production to obtain leptoquark mass limits as a function of the leptoquark-muon-quark coupling, lambda. Assuming lambda = 1, lower limits on the mass of a second generation scalar leptoquark coupling to a u quark and a muon are m(LQ2) > 274 GeV and m(LQ2) > 226 GeV for beta = 1 and beta = 1/2, respectively. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We report the observation of the X(3872) in the J/psipi(+)pi(-) channel, with J/psi decaying to mu(+)mu(-), in p (p) over bar collisions at roots=1.96 TeV. Using approximately 230 pb(-1) of data collected with the Run II D0 detector, we observe 522+/-100 X(3872) candidates. The mass difference between the X(3872) state and the J/psi is measured to be 774.9+/-3.1(stat)+/-3.0(syst) MeV/c(2). We have investigated the production and decay characteristics of the X(3872) and find them to be similar to those of the psi(2S) state.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Search for the standard model Higgs boson decaying to bottom quarks in pp collisions at root s=7 TeV
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Search for Higgs bosons decaying to tau(+)tau(-) pairs in p(p)over-bar collisions at root s=1.96 TeV
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Search for the standard model Higgs boson decaying into two photons in pp collisions at root s=7 TeV
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This Letter describes the search for a new heavy charged gauge boson W-' decaying into an electron and a neutrino. The data were collected with the D0 detector at the Fermilab Tevatron p (p) over bar Collider at root s=1.96 TeV, and correspond to an integrated luminosity of about 1 fb(-1). Lacking any significant excess in the data in comparison with known processes, an upper limit is set on sigma(')(W)xB(W-'-> e nu), and a W-' boson with mass below 1.00 TeV can be excluded at the 95% C.L., assuming standard-model-like couplings to fermions. This result significantly improves upon previous limits and is the most stringent to date.