458 resultados para Wires


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE Fixation of periprosthetic hip fractures with intracortical anchorage might not be feasible in cases with bulky implants and/or poor bone stock. METHODS Rotational stability of new plate inserts with extracortical anchorage for cerclage fixation was measured and compared to the stability found using a standard technique in a biomechanical setup using a torsion testing machine. In a synthetic PUR bone model, transverse fractures were fixed distally using screws and proximally by wire cerclages attached to the plates using "new" (extracortical anchorage) or "standard" (intracortical anchorage) plate inserts. Time to fracture consolidation and complications were assessed in a consecutive series of 18 patients (18 female; mean age 81 years, range 55-92) with periprosthetic hip fractures (ten type B1, eight type C-Vancouver) treated with the new device between July 2003 and July 2010. RESULTS The "new" device showed a higher rotational stability than the "standard" technique (p < 0.001). Fractures showed radiographic consolidation after 14 ± 5 weeks (mean ± SD) postoperatively in patients. Revision surgery was necessary in four patients, unrelated to the new technique. CONCLUSION In periprosthetic hip fractures in which fixation with intracortical anchorage using conventional means might be difficult due to bulky revision stems and/or poor bone stock, the new device may be an addition to the range of existing implants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND/OBJECTIVES The purpose of this study was to compare the mechanical, structural, and aesthetic properties of two types of aesthetic coated nickel-titanium (NiTi) wires compared with comparable regular NiTi wires in the as-received state and after clinical use. MATERIALS/METHODS Sixty one subjects were randomly assigned to four groups (N = 61), two groups of coated wires and two groups of comparable, non-coated controls (n = 15/group). The period in the mouth ranged from 4 to 12 weeks after insertion. In total, 121 wires (61 retrieved and 60 as-received) were used in the study. The percentages of coating retention and loss were extrapolated from scans. A brief survey of five questions with three choices was given to all patients. Differential scanning calorimetry (DSC) and three-point bending tests were done on as-received and used wires. RESULTS The surface characterization by the percentage of resin remaining indicated that most wires in both test groups lost a significant amount of coating. A patient survey indicated that this was a noticeable feature for patients. DSC analysis of the wires indicated that the metallurgical properties of the coated wires were not similar to the uncoated wires in the as-received condition. Three-point bending results indicate a wide variation in test results with large standard deviations among all the groups. LIMITATIONS The extent of coating loss requires investigating, as do the biological properties of the detached coating. CONCLUSIONS Both wires lost a significant amount of aesthetic coating after varying periods in the mouth. The metallurgical testing of these findings may indicate that these wires perform differently in the mouth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate how redox control of intra-molecular quantum interference in phase-coherent molecular wires can be used to enhance the thermopower (Seebeck coefficient) S and thermoelectric figure of merit ZT of single molecules attached to nanogap electrodes. Using first principles theory, we study the thermoelectric properties of a family of nine molecules, which consist of dithiol-terminated oligo (phenylene-ethynylenes) (OPEs) containing various central units. Uniquely, one molecule of this family possesses a conjugated acene-based central backbone attached via triple bonds to terminal sulfur atoms bound to gold electrodes and incorporates a fully conjugated hydroquinonecentral unit. We demonstrate that both S and the electronic contribution Z el T to the figure of merit ZT can be dramatically enhanced by oxidizing the hydroquinone to yield a second molecule, which possesses a cross-conjugated anthraquinone central unit. This enhancement originates from the conversion of the pi-conjugation in the former to cross-conjugation in the latter, which promotes the appearance of a sharp anti-resonance at the Fermi energy. Comparison with thermoelectric properties of the remaining seven conjugated molecules demonstrates that such large values of S and Z el T are unprecedented. We also evaluate the phonon contribution to the thermal conductance, which allows us to compute the full figure of merit ZT = Z el T/(1 + κ p/κ el), where κ p is the phonon contribution to the thermal conductance and κ el is the electronic contribution. For unstructured gold electrodes, κ p/κ el Gt⃒ 1 and therefore strategies to reduce κ p are needed to realize the highest possible figure of merit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possible deleterious effects of coiling and long time storage of coiled wires on the stress relaxation behaviour of prestressing steel wires has been checked by means of experimental work and a simple analytical model. The results show that if the requirements of Standards are fulfilled (minimum coiling diameters) these effects can be neglected. However, some other factors like previous residual stresses, long time storage or storage at high temperatures, can trigger or emphasize this damage on the material. In the authors? opinion it is recommended to control the final curvature of the wires after uncoiling prior to prestressin, as required in some Standards.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prestressed structures are susceptible to relaxation losses which are of significant importance in structural design. After being manufactured, prestressing wires are coiled to make their storage and transportation easier. The possible deleterious effects of this operation on the stress relaxation behavior of prestressing steel wires are usually neglected, though it has been noticed by manufacturers and contractors that when relaxation tests are carried out after a long-time storage, on occasions relaxation losses are higher than those measured a short time after manufacturing. The influence of coiling on the relaxation losses is checked by means of experimental work and confirmed with a simple analytical model. The results show that some factors like initial residual stresses, excessively long-time storage or storage at high temperatures, can trigger or accentuate this damage. However, it is also shown that if the requirements of standards are fulfilled (minimum coiling diameters) these effects can be neglected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possible deleterious effects of coiling and long-term storage of coiled wires on the stress relaxation behaviour of prestressing steel wires has been checked by means of experimental work and a simple analytical model. The results show that if the requirements of standards are fulfilled (minimum coiling diameters), these effects can be neglected. However, some other factors, such as previous residual stresses, long-term storage or storage at high temperatures, can trigger or emphasize this damage to the material. In the authors' opinion, checking the final curvature of the wires after uncoiling prior to prestressing, as required in some standards, is to be recommended.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this paper is to provide information on the behaviour of steel prestressing wires under likely conditions that could be expected during a fire or impact loads. Four loadings were investigated: a) the influence of strain rate – from 10–3 to 600 s–1 – at room temperature, b) the influence of temperature – from 24 to 600 °C – at low strain rate, c) the influence of the joint effect of strain rate and temperature, and d) damage after three plausible fire scenarios. At room temperature it was found that using “static” values is a safe option. At high temperatures our results are in agreement with design codes. Regarding the joint effect of temperature and strain rate, mechanical properties decrease with increasing temperature, although for a given temperature, yield stress and tensile strength increase with strain rate. The data provided can be used profitably to model the mechanical behaviour of steel wires under different scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possible deleterious effects of coiling and long-time storage of coiled wires on the stress relaxation behaviour of prestressing steel wires has been checked by means of experimental work and a simple analytical model. The results show that if the requirements of Standards are fulfilled (minimum coiling diameters) these effects can be neglected. However, some other factors like previous residual stresses, long-time storage or storage at high temperatures, can trigger or emphasise this damage to the material. In the authors’ opinion it is recommendable to control the final curvature of the wires after uncoiling prior to prestressing, as required in some Standards.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Damage tolerance of high strength cold-drawn ferritic–austenitic stainless steel wires is assessed by means of tensile fracture tests of cracked wires. The fatigue crack is transversally propagated from the wire surface. The damage tolerance curve of the wires results from the empirical failure load when given as a function of crack depth. As a consequence of cold drawing, the wire microstructure is orientated along its longitudinal axis and anisotropic fracture behaviour is found at macrostructural level at the tensile failure of the cracked specimens. An in situ optical technique known as video image correlation VIC-2D is used to get an insight into this failure mechanism by tensile testing transversally fatigue cracked plane specimens extracted from the cold-drawn wires. Finally, the experimentally obtained damage tolerance curve of the cold-drawn ferritic–austenitic stainless steel wires is compared with that of an elementary plastic collapse model and existing data of two types of high strength eutectoid steel currently used as prestressing steel for concrete.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Residual stresses developed during wire drawing influence the mechanical behavior and durability of steel wires used for prestressed concrete structures, particularly the shape of the stress–strain curve, stress relaxation losses, fatigue life, and environmental cracking susceptibility. The availability of general purpose finite element analysis tools and powerful diffraction techniques (X-rays and neutrons) has made it possible to predict and measure accurately residual stress fields in cold-drawn steel wires. Work carried out in this field in the past decade, shows the prospects and limitations of residual stress measurement, how the stress relaxation losses and environmentally-assisted cracking are correlated with the profile of residual stresses and how the performance of steel wires can be improved by modifying such a stress profile

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prestressed structures are susceptible to relaxation losses which are of significant importance in structural design. After being manufactured, prestressing wires are coiled to make their storage and transportation easier. The possible deleterious effects of this operation on the stress relaxation behavior of prestressing steel wires are usually neglected, though it has been noticed by manufacturers and contractors that when relaxation tests are carried out after a long-time storage, on occasions relaxation losses are higher than those measured a short time after manufacturing. The influence of coiling on the relaxation losses is checked by means of experimental work and confirmed with a simple analytical model. The results show that some factors like initial residual stresses, excessively long-time storage or storage at high temperatures,can trigger or accentuate this damage. However, it is also shown that if the requirements of standards are fulfilled (minimum coiling diameters) these effects can be neglected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The excitation of Fast Magnetosonic (FMS)waves by a cylindrical array of parallel tethers carrying timemodulated current is discussed. The tethers would fly vertical in the equatorial plane, which is perpendicular to the geomagnetic field when its tilt is ignored, and would be stabilized by the gravity gradient. The tether array would radiate a single FMS wave. In the time-dependent background made of geomagnetic field plus radiated wave, plasma FMS perturbations are excited in the array vicinity through a parametric instability. The growth rate is estimated by truncating the evolution equation for FMS perturbations to the two azimuthal modes of lowest order. Design parameters such as tether length and number, required power and mass are discussed for Low Earth Orbit conditions. The array-attached wave structure would have the radiated wave controlled by the intensity and modulation frequency of the currents, making an active experiment on non-linear low frequency waves possible in real space plasma conditions.