999 resultados para Wheel-rail interaction
Resumo:
A research project was conducted at Queensland University of Technology on the relationship between the forces at the wheel-rail interface in track and the rate of degradation of track. Data for the study was obtained from an instrumented vehicle which ran repeatedly over a section of Queensland Rail's track in Central Queensland over a 6-month period. The wheel-rail forces had to be correlated with the elements of roughness in the test track profile, which were measured with a variety of equipment. At low frequencies, there was strong correlation between forces and profile, as expected, but diminishing correlation as frequencies increased.
Resumo:
The paper explores the way in which the life of concrete sleepers can be dramatically affected by two important factors, namely impact forces and fatigue cycles. Drawing on the very limited experimental and field data currently available about these two factors, the paper describes detailed simulations of sleepers in a heavy haul track in Queensland Australia over a period of 100 years. The simulation uses real wheel/rail impact force records from that track, together with data on static bending tests of similar sleepers and preliminary information on their impact vs static strength. The simulations suggest that despite successful performance over many decades, large unplanned replacement costs could be imminent, especially considering the increasingly demanding operational conditions sleepers have sustained over their life. The paper also discusses the key factors track owners need to consider in attempting to plan for these developments.
Resumo:
This paper presents a path planning technique for ground vehicles that accounts for the dynamics of the vehicle, the topography of the terrain and the wheel/ground interaction properties such as friction. The first two properties can be estimated using well known sensors and techniques, but the third is not often estimated even though it has a significant effect on the motion of a high-speed vehicle. We introduce a technique which allows the estimation of wheel slip from which frictional parameters can be inferred. We present simulation results which show the importance of modelling topography and ground properties and experimental results which show how ground properties can be estimated along a 350m outdoor traverse.
Resumo:
Railway is one of the most important, reliable and widely used means of transportation, carrying freight, passengers, minerals, grains, etc. Thus, research on railway tracks is extremely important for the development of railway engineering and technologies. The safe operation of a railway track is based on the railway track structure that includes rails, fasteners, pads, sleepers, ballast, subballast and formation. Sleepers are very important components of the entire structure and may be made of timber, concrete, steel or synthetic materials. Concrete sleepers were first installed around the middle of last century and currently are installed in great numbers around the world. Consequently, the design of concrete sleepers has a direct impact on the safe operation of railways. The "permissible stress" method is currently most commonly used to design sleepers. However, the permissible stress principle does not consider the ultimate strength of materials, probabilities of actual loads, and the risks associated with failure, all of which could lead to the conclusion of cost-ineffectiveness and over design of current prestressed concrete sleepers. Recently the limit states design method, which appeared in the last century and has been already applied in the design of buildings, bridges, etc, is proposed as a better method for the design of prestressed concrete sleepers. The limit states design has significant advantages compared to the permissible stress design, such as the utilisation of the full strength of the member, and a rational analysis of the probabilities related to sleeper strength and applied loads. This research aims to apply the ultimate limit states design to the prestressed concrete sleeper, namely to obtain the load factors of both static and dynamic loads for the ultimate limit states design equations. However, the sleepers in rail tracks require different safety levels for different types of tracks, which mean the different types of tracks have different load factors of limit states design equations. Therefore, the core tasks of this research are to find the load factors of the static component and dynamic component of loads on track and the strength reduction factor of the sleeper bending strength for the ultimate limit states design equations for four main types of tracks, i.e., heavy haul, freight, medium speed passenger and high speed passenger tracks. To find those factors, the multiple samples of static loads, dynamic loads and their distributions are needed. In the four types of tracks, the heavy haul track has the measured data from Braeside Line (A heavy haul line in Central Queensland), and the distributions of both static and dynamic loads can be found from these data. The other three types of tracks have no measured data from sites and the experimental data are hardly available. In order to generate the data samples and obtain their distributions, the computer based simulations were employed and assumed the wheel-track impacts as induced by different sizes of wheel flats. A valid simulation package named DTrack was firstly employed to generate the dynamic loads for the freight and medium speed passenger tracks. However, DTrack is only valid for the tracks which carry low or medium speed vehicles. Therefore, a 3-D finite element (FE) model was then established for the wheel-track impact analysis of the high speed track. This FE model has been validated by comparing its simulation results with the DTrack simulation results, and with the results from traditional theoretical calculations based on the case of heavy haul track. Furthermore, the dynamic load data of the high speed track were obtained from the FE model and the distributions of both static and dynamic loads were extracted accordingly. All derived distributions of loads were fitted by appropriate functions. Through extrapolating those distributions, the important parameters of distributions for the static load induced sleeper bending moment and the extreme wheel-rail impact force induced sleeper dynamic bending moments and finally, the load factors, were obtained. Eventually, the load factors were obtained by the limit states design calibration based on reliability analyses with the derived distributions. After that, a sensitivity analysis was performed and the reliability of the achieved limit states design equations was confirmed. It has been found that the limit states design can be effectively applied to railway concrete sleepers. This research significantly contributes to railway engineering and the track safety area. It helps to decrease the failure and risks of track structure and accidents; better determines the load range for existing sleepers in track; better rates the strength of concrete sleepers to support bigger impact and loads on railway track; increases the reliability of the concrete sleepers and hugely saves investments on railway industries. Based on this research, many other bodies of research can be promoted in the future. Firstly, it has been found that the 3-D FE model is suitable for the study of track loadings and track structure vibrations. Secondly, the equations for serviceability and damageability limit states can be developed based on the concepts of limit states design equations of concrete sleepers obtained in this research, which are for the ultimate limit states.
Resumo:
Heavy haul railway lines are important and expensive items of infrastructure operating in an environment which is increasingly focussed on risk-based management and constrained profit margins. It is vital that costs are minimised but also that infrastructure satisfies failure criteria and standards of reliability which account for the random nature of wheel-rail forces and of the properties of the materials in the track. In Australia and the USA, concrete railway sleepers/ties are still designed using methods which the rest of the civil engineering world discarded decades ago in favour of the more rational, more economical and probabilistically based, limit states design (LSD) concept. This paper describes a LSD method for concrete sleepers which is based on (a) billions of measurements over many years of the real, random wheel-rail forces on heavy haul lines, and (b) the true capacity of sleepers. The essential principles on which the new method is based are similar to current, widely used LSD-based standards for concrete structures. The paper proposes and describes four limit states which a sleeper must satisfy, namely: strength; operations; serviceability; and fatigue. The method has been applied commercially to two new major heavy haul lines in Australia, where it has saved clients millions of dollars in capital expenditure.
Resumo:
Lateral collisions between heavy road vehicles and passenger trains at level crossings and the associated derailments are serious safety issues. This paper presents a detailed investigation of the dynamic responses and derailment mechanisms of trains under lateral impact using a multi-body dynamics simulation method. Formulation of a three-dimensional dynamic model of a passenger train running on a ballasted track subject to lateral impact caused by a road truck is presented. This model is shown to predict derailment due to wheel climb and car body overturning mechanisms through numerical examples. Sensitivities of the truck speed and mass, wheel/rail friction and the train suspension to the lateral stability and derailment of the train are reported. It is shown that improvements to the design of train suspensions, including secondary and inter-vehicle lateral dampers have higher potential to mitigate the severity of the collision-induced derailments.
Resumo:
利用虚拟现实技术虚拟出月球机器人在月面上的作业环境和作业过程,是提高机器人作业的安全系数和工作效率的一条有效途径。在3D重建得到的虚拟月面环境中,如果采用通常的单纯基于运动学(或者动力学)模型的仿真方法,对机器人的作业和运动进行虚拟,那么机器人与地形交互的过程中容易产生接触偏差。而且,随着仿真时间的推进,这种接触偏差会逐渐积累并不断增大,进而严重影响仿真测试的精度和效果。为了消除月球机器人仿真中的轮地交互误差,在分析误差来源的基础上,提出了基于运动学优化的解决方法。最后利用实际的虚拟现实仿真系统,验证了所提出方法的有效性。
Resumo:
月面巡视探测器(简称月球车)是一类在月面环境下执行巡视探测、科学考察及样品采样等任务的空间机器人,是我国月球探测二期工程中执行月面探测任务的关键载体。月球车行走能力事关我国探月二期工程的成败,开展在复杂地形下移动能力和地形通过能力的研究,是目前移动机器人研究中的前沿课题,是月面巡视任务的关键技术之一。本论文的选题具有重要的理论意义和应用价值。 月面环境的特殊性使月球车进行长距离、大范围的巡视任务面临一系列问题,包括地形对月球车移动性的影响、移动能力、地形通过能力、地形适应能力、安全性等。本文以月球车保持复杂地形下的高移动能力和地形通过能力为研究目标,以一种典型的被动柔顺式月球车为对象,从月球车与环境地形具有整体不可分离性的角度,将机器人与环境地形看成是相互作用的整体,深入研究了轮-地交互关系、软硬地形上的轮-地接触模型、环境地形给月球车带来的影响、软硬地形上的月球车建模、参数估计及运动控制等问题。根据对月球车移动性能影响程度之不同,本文从硬质地形与松软地形两个方面来考察环境地形的物理属性和轮-地交互关系。在硬质地形上,主要考虑地形平坦与不平坦对机器人移动的影响及其控制,六个驱动轮的速度协调控制,车轮打滑(前滑、侧滑、转向滑移)对机器人的建模、分析及控制的影响。在松软地形上,主要考虑轮-地接触关系,土壤特性对移动的影响及其控制。在大量阅读国内外文献并归纳总结的基础上,重点开展了如下几方面的研究: (1)在硬质不平坦地形下,引入轮-地几何接触角概念以反映地形不平坦时轮-地接触点在轮缘上位置的变化,去掉了通常采用的车轮纯滚动假设,考虑车轮滑移(包括侧滑、侧滑以及转向滑移),并结合月球车被动柔顺式移动机构的特点,提出了一种基于速度闭链的运动学建模方法,进行了基于整车模型的月球车速度协调控制研究。该运动学建模方法基于轮心处的速度投影建立整体运动学模型,物理概念清晰、便于实时运动学正反解计算。 (2)针对运动学模型中轮-地几何接触角难以直接测量的问题,提出了两种在线估计方法:误差计算法和卡尔曼滤波估计法。这两种方法均基于月球车整体运动学模型,只需要车轮内部传感器的测量信息,就能在线估计轮-地几何接触角。 (3)由于车轮滑移的影响,采用航位推算方法进行月球车状态估计以及里程计计算存在较大误差。本文提出了基于整体运动学模型的车体运动状态估计方法,并在月球车样机上对车体速度估计、航向角估计、里程计实时计算等方法进行了大量实验研究,验证了算法的有效性。 (4)针对松软地形上刚性轮与地形的交互建模问题,提出了一种基于Guass-Legendre数值积分和Newton-Raphson数值解法的地形参数实时估计方法。以月壤参数的变化范围为参考空间,通过数值仿真将不同地形参数对轮-地接触力的影响进行比较,进而选取对轮-地接触力有较大影响的地形参数进行在线估计,仿真和实验结果均表明估计算法是有效的。 (5)松软地形上常规的速度控制效果差,本文开展了月球车准静力学建模及牵引力控制算法研究,提出了两种牵引力控制算法。对月球车准静力学模型进行简化,提出了一种基于目标优化、考虑车体姿态变化的牵引力控制算法。利用上一章在线估计出的地形参数,对车轮滑移率进行最优估计,提出了一种基于最优滑移率的牵引力控制算法,并进行了仿真验证。
Resumo:
基于车轮滑转率和车轮地面力学,研究了月球车在松软月面行驶时的车轮过度下陷问题.将月球车车轮下陷和车轮—土壤作用力表达为车轮滑转率的函数,结合车辆地面力学理论并考虑纵列式车轮多通过性土壤参数的修正,建立了月球车的动力学模型.判断车轮是否发生过度下陷的标准为土壤所提供给驱动轮的土壤推力能否克服土壤对车轮的阻力.利用建立的动力学模型,计算出能够保证车轮不会过度下陷的期望滑转率.考虑到月球车动力学系统的非线性和不确定性,设计了以车轮滑转率为状态变量的滑模驱动控制器.仿真结果表明,采用该控制器可以较快地跟踪期望滑转率,避免车轮的过度滑转下陷,保证月球车能够在软质路面上正常行驶.
Resumo:
Conduziu-se este trabalho, com o objetivo de avaliar três modelos de rodas compactadoras de semeadoras, dois níveis de carga vertical sobre as mesmas e duas lâminas de irrigação durante os períodos de pré e pós-emergência das plântulas de milho. O ensaio foi conduzido na UNESP de Jaboticabal, com o delineamento inteiramente casualizado (DIC) no esquema fatorial 3x2x2, combinando de três modelos de rodas compactadoras (roda lisa com estria, roda lisa com nervura e roda duplo angulada), com dois níveis de carga (162 N e 260 N) e dois teores de água (15 e 19,5 mm dia-¹) sob três repetições. Os parâmetros analisados foram: produtividade, número de grãos por espiga, massa de 100 grãos, matéria seca de plantas, número de dias para emergência, altura das plantas, diâmetro dos colmos das plantas e altura de inserção da primeira espiga. A variável diâmetro do colmo obteve melhor resultado sob a influência de maior lâmina de água, diferente da variável matéria seca de plantas. A inserção da primeira espiga foi afetada pela carga utilizada sobre a roda compactadora durante a semeadura. Quanto maior a carga utilizada, menor é a altura da inserção da primeira espiga. A interação roda x lâmina foi significativa para a variável número de grão.
Resumo:
The wheel - rail contact analysis plays a fundamental role in the multibody modeling of railway vehicles. A good contact model must provide an accurate description of the global contact phenomena (contact forces and torques, number and position of the contact points) and of the local contact phenomena (position and shape of the contact patch, stresses and displacements). The model has also to assure high numerical efficiency (in order to be implemented directly online within multibody models) and a good compatibility with commercial multibody software (Simpack Rail, Adams Rail). The wheel - rail contact problem has been discussed by several authors and many models can be found in the literature. The contact models can be subdivided into two different categories: the global models and the local (or differential) models. Currently, as regards the global models, the main approaches to the problem are the so - called rigid contact formulation and the semi – elastic contact description. The rigid approach considers the wheel and the rail as rigid bodies. The contact is imposed by means of constraint equations and the contact points are detected during the dynamic simulation by solving the nonlinear algebraic differential equations associated to the constrained multibody system. Indentation between the bodies is not permitted and the normal contact forces are calculated through the Lagrange multipliers. Finally the Hertz’s and the Kalker’s theories allow to evaluate the shape of the contact patch and the tangential forces respectively. Also the semi - elastic approach considers the wheel and the rail as rigid bodies. However in this case no kinematic constraints are imposed and the indentation between the bodies is permitted. The contact points are detected by means of approximated procedures (based on look - up tables and simplifying hypotheses on the problem geometry). The normal contact forces are calculated as a function of the indentation while, as in the rigid approach, the Hertz’s and the Kalker’s theories allow to evaluate the shape of the contact patch and the tangential forces. Both the described multibody approaches are computationally very efficient but their generality and accuracy turn out to be often insufficient because the physical hypotheses behind these theories are too restrictive and, in many circumstances, unverified. In order to obtain a complete description of the contact phenomena, local (or differential) contact models are needed. In other words wheel and rail have to be considered elastic bodies governed by the Navier’s equations and the contact has to be described by suitable analytical contact conditions. The contact between elastic bodies has been widely studied in literature both in the general case and in the rolling case. Many procedures based on variational inequalities, FEM techniques and convex optimization have been developed. This kind of approach assures high generality and accuracy but still needs very large computational costs and memory consumption. Due to the high computational load and memory consumption, referring to the current state of the art, the integration between multibody and differential modeling is almost absent in literature especially in the railway field. However this integration is very important because only the differential modeling allows an accurate analysis of the contact problem (in terms of contact forces and torques, position and shape of the contact patch, stresses and displacements) while the multibody modeling is the standard in the study of the railway dynamics. In this thesis some innovative wheel – rail contact models developed during the Ph. D. activity will be described. Concerning the global models, two new models belonging to the semi – elastic approach will be presented; the models satisfy the following specifics: 1) the models have to be 3D and to consider all the six relative degrees of freedom between wheel and rail 2) the models have to consider generic railway tracks and generic wheel and rail profiles 3) the models have to assure a general and accurate handling of the multiple contact without simplifying hypotheses on the problem geometry; in particular the models have to evaluate the number and the position of the contact points and, for each point, the contact forces and torques 4) the models have to be implementable directly online within the multibody models without look - up tables 5) the models have to assure computation times comparable with those of commercial multibody software (Simpack Rail, Adams Rail) and compatible with RT and HIL applications 6) the models have to be compatible with commercial multibody software (Simpack Rail, Adams Rail). The most innovative aspect of the new global contact models regards the detection of the contact points. In particular both the models aim to reduce the algebraic problem dimension by means of suitable analytical techniques. This kind of reduction allows to obtain an high numerical efficiency that makes possible the online implementation of the new procedure and the achievement of performance comparable with those of commercial multibody software. At the same time the analytical approach assures high accuracy and generality. Concerning the local (or differential) contact models, one new model satisfying the following specifics will be presented: 1) the model has to be 3D and to consider all the six relative degrees of freedom between wheel and rail 2) the model has to consider generic railway tracks and generic wheel and rail profiles 3) the model has to assure a general and accurate handling of the multiple contact without simplifying hypotheses on the problem geometry; in particular the model has to able to calculate both the global contact variables (contact forces and torques) and the local contact variables (position and shape of the contact patch, stresses and displacements) 4) the model has to be implementable directly online within the multibody models 5) the model has to assure high numerical efficiency and a reduced memory consumption in order to achieve a good integration between multibody and differential modeling (the base for the local contact models) 6) the model has to be compatible with commercial multibody software (Simpack Rail, Adams Rail). In this case the most innovative aspects of the new local contact model regard the contact modeling (by means of suitable analytical conditions) and the implementation of the numerical algorithms needed to solve the discrete problem arising from the discretization of the original continuum problem. Moreover, during the development of the local model, the achievement of a good compromise between accuracy and efficiency turned out to be very important to obtain a good integration between multibody and differential modeling. At this point the contact models has been inserted within a 3D multibody model of a railway vehicle to obtain a complete model of the wagon. The railway vehicle chosen as benchmark is the Manchester Wagon the physical and geometrical characteristics of which are easily available in the literature. The model of the whole railway vehicle (multibody model and contact model) has been implemented in the Matlab/Simulink environment. The multibody model has been implemented in SimMechanics, a Matlab toolbox specifically designed for multibody dynamics, while, as regards the contact models, the CS – functions have been used; this particular Matlab architecture allows to efficiently connect the Matlab/Simulink and the C/C++ environment. The 3D multibody model of the same vehicle (this time equipped with a standard contact model based on the semi - elastic approach) has been then implemented also in Simpack Rail, a commercial multibody software for railway vehicles widely tested and validated. Finally numerical simulations of the vehicle dynamics have been carried out on many different railway tracks with the aim of evaluating the performances of the whole model. The comparison between the results obtained by the Matlab/ Simulink model and those obtained by the Simpack Rail model has allowed an accurate and reliable validation of the new contact models. In conclusion to this brief introduction to my Ph. D. thesis, we would like to thank Trenitalia and the Regione Toscana for the support provided during all the Ph. D. activity. Moreover we would also like to thank the INTEC GmbH, the society the develops the software Simpack Rail, with which we are currently working together to develop innovative toolboxes specifically designed for the wheel rail contact analysis.