872 resultados para Wetlands : functioning, biodiversity conservation and restoration
Resumo:
The cultural valuation of biodiversity has taken on renewed importance over the last two decades as the ecosystem services framework has become widely adopted. Conservation initiatives increasingly use ecosystem service frameworks to render tropical forest landscapes and their peoples legible to market-oriented initiatives such as REDD+ and biodiversity offsetting schemes. Ecosystem service approaches have been widely criticized by scholars in the social sciences and humanities for their narrow focus on a small number of easily quantifiable and marketable services and a reductionist and sometimes simplistic approach to culture. We address the need to combine methods from each of the “three cultures” of natural science, quantitative social science, and qualitative social science/humanities in conceptualizing the relationship between cultural valuation and biodiversity conservation. We combine qualitative data with forest inventories and a quantitative index of cultural value to evaluate the relationship between cultural valuation and biodiversity conservation in Upper Guinea forest in Liberia, West Africa. Our study focuses on “sacred agroforests,” spaces that are associated with Mande macro-language speaking groups such as the Loma. We demonstrate that sacred agroforests are associated with different cultural values compared with secondary forests. Although biodiversity and biomass are similar, sacred agroforests exhibit a different species composition, especially of culturally salient species, increasing overall landscape agro-biodiversity. Sacred agroforests are also shaped and conserved by local cultural institutions revolving around ancestor worship, ritual, and the metaphysical conceptual category “salɛ.” We conclude that to understand the relationship between cultural valuation and biodiversity conservation, interpretivist approaches such as phenomenology should be employed alongside positivist ecosystem service frameworks.
Resumo:
Although the value of primary forests for biodiversity conservation is well known, the potential biodiversity and conservation value of regenerating forests remains controversial. Many factors likely contribute to this, including: 1. the variable ages of regenerating forests being studied (often dominated by relatively young regenerating forests); 2. the potential for confounding on-going human disturbance (such as logging and hunting); 3. the relatively low number of multi-taxa studies; 4. the lack of studies that directly compare different historic disturbances within the same location; 5. contrasting patterns from different survey methodologies and the paucity of knowledge on the impacts across different vertical levels of rainforest biodiversity (often due to a lack of suitable methodologies available to assess them). We also know relatively little as to how biodiversity is affected by major current impacts, such as unmarked rainforest roads, which contribute to this degradation of habitat and fragmentation. This thesis explores the potential biodiversity value of regenerating rainforests under the best of scenarios and seeks to understand more about the impact of current human disturbance to biodiversity; data comes from case studies from the Manu and Sumaco Biosphere Reserves in the Western Amazon. Specifically, I compare overall biodiversity and conservation value of a best case regenerating rainforest site with a selection of well-studied primary forest sites and with predicted species lists for the region; including a focus on species of key conservation concern. I then investigate the biodiversity of the same study site in reference to different types of historic anthropogenic disturbance. Following this I investigate the impacts to biodiversity from an unmarked rainforest road. In order to understand more about the differential effects of habitat disturbance on arboreal diversity I directly assess how patterns of butterfly biodiversity vary between three vertical strata. Although assessments within the canopy have been made for birds, invertebrates and bats, very few studies have successfully targeted arboreal mammals. I therefore investigate the potential of camera traps for inventorying arboreal mammal species in comparison with traditional methodologies. Finally, in order to investigate the possibility that different survey methodologies might identify different biodiversity patterns in habitat disturbance assessments, I investigate whether two different but commonly used survey methodologies used to assess amphibians, indicate the same or different responses of amphibian biodiversity to historic habitat change by people. The regenerating rainforest study site contained high levels of species richness; both in terms of alpha diversity found in nearby primary forest areas (87% ±3.5) and in terms of predicted primary forest diversity from the region (83% ±6.7). This included 89% (39 out of 44) of the species of high conservation concern predicted for the Manu region. Faunal species richness in once completely cleared regenerating forest was on average 13% (±9.8) lower than historically selectively logged forest. The presence of the small unmarked road significantly altered levels of faunal biodiversity for three taxa, up to and potentially beyond 350m into the forest interior. Most notably, the impact on biodiversity extended to at least 32% of the whole reserve area. The assessment of butterflies across strata showed that different vertical zones within the same rainforest responded differently in areas with different historic human disturbance. A comparison between forest regenerating after selective logging and forest regenerating after complete clearance, showed that there was a 17% greater reduction in canopy species richness in the historically cleared forest compared with the terrestrial community. Comparing arboreal camera traps with traditional ground-based techniques suggests that camera traps are an effective tool for inventorying secretive arboreal rainforest mammal communities and detect a higher number of cryptic species. Finally, the two survey methodologies used to assess amphibian communities identified contrasting biodiversity patterns in a human modified rainforest; one indicated biodiversity differences between forests with different human disturbance histories, whereas the other suggested no differences between forest disturbance types. Overall, in this thesis I find that the conservation and biodiversity value of regenerating and human disturbed tropical forest can potentially contribute to rainforest biodiversity conservation, particularly in the best of circumstances. I also highlight the importance of utilising appropriate study methodologies that to investigate these three-dimensional habitats, and contribute to the development of methodologies to do so. However, care should be taken when using different survey methodologies, which can provide contrasting biodiversity patterns in response to human disturbance.
Resumo:
The Marine Park Prof. Luiz Saldanha, in the coast of Arrabida, is the first marine park in continental Portugal. This area is a Nature 2000 site and is considered to be a hotspot for European marine biodiversity. In 2005, the management plan of the park was implemented, ending several habitat menaces, thereby allowing an application to the LIFE-NATURE Programme. The LIFE-BIOMARES project aimed at the restoration and management of the biodiversity of the marine park through several actions. The restoration of the seagrass prairies that were completely destroyed by fishing activities and recreational boating, was one of the most challenging. It included the transplanting of seagrasses from donor populations and the germination of seagrass seeds for posterior plantation to maintain genetic diversity in the transplanted area. One of the most popular actions was the implementation of environmental friendly moorings to integrate recreational use of the area with environmental protection. Several dissemination and environmental education actions concerning the marine park and the project took place and contributed to the public increase of the park acceptance. The seabed habitats were mapped along the park and a surrounding area to 100 m depth in order to create a habitat cartography of the park and to help locate alternative fishing zones. Biodiversity assessments for macrofauna revealed seasonal variations and an effect of the protection status. Preliminary results are presented and show that the marine park regulations are having a positive effect on biodiversity conservation and sustainable fisheries, thereby showing that these kind of conservation projects are important to disseminate coastal conservation best practices. The Biomares project is a model project that can be followed in the implementation of marine reserves and the establishment of the Natura 2000 marine network.
Resumo:
The use of environmental DNA (eDNA) analysis as a monitoring tool is becoming more and more widespread. The eDNA metabarcoding methods allow rapid community assessments of different target taxa. This work is focused on the validation of the environmental DNA metabarcoding protocol for biodiversity assessment of freshwater habitats. Scolo Dosolo was chosen as study area and three sampling points were defined for traditional and eDNA analyses. The gutter is a 205 m long anthropic canal located in Sala Bolognese (Bologna, Italy). Fish community and freshwater invertebrate metazoans were the target groups for the analysis. After a preliminary study in summer 2019, 2020 was devoted to the sampling campaign with winter (January), spring (May), summer (July) and autumn (October) surveys. Alongside with the water samplings for the eDNA study, also traditional fish surveys using the electrofishing technique were performed to assess fish community composition; census on invertebrates was performed using an entomological net and a surber sampler. After in silico analysis, the MiFish primer set amplifying a fragment of the 12s rRNA gene was selected for bony fishes. For invertebrates the FWHF2 + FWHR2N primer combination, that amplifies a region of the mitochondrial coi gene, was chosen. Raw reads were analyzed through a bioinformatic pipeline based on OBITools metabarcoding programs package and QIIME2. The OBITools pipeline retrieved seven fish taxa and 54 invertebrate taxa belonging to six different phyla, while QIIME2 recovered eight fish taxa and 45 invertebrate taxa belonging to the same six phyla as the OBITools pipeline. The metabarcoding results were then compared with the traditional surveys data and bibliographic records. Overall, the validated protocol provides a reliable picture of the biodiversity of the study area and an efficient support to the traditional methods.
Resumo:
Given escalating concern worldwide about the loss of biodiversity, and given biodiversity's centrality to quality of life, it is imperative that current ecological knowledge fully informs societal decision making. Over the past two decades, ecological science has undergone many significant shifts in emphasis and perspective, which have important implications for how we manage ecosystems and species. In particular, a shift has occurred from the equilibrium paradigm to one that recognizes the dynamic, non-equilibrium nature of ecosystems. Revised thinking about the spatial and temporal dynamics of ecological systems has important implications for management. Thus, it is of growing concern to ecologists and others that these recent developments have not been translated into information useful to managers and policy makers. Many conservation policies and plans are still based on equilibrium assumptions. A fundamental difficulty with integrating current ecological thinking into biodiversity policy and management planning is that field observations have yet to provide compelling evidence for many of the relationships suggested by non-equilibrium ecology. Yet despite this scientific uncertainty, management and policy decisions must still be made. This paper was motivated by the need for considered scientific debate on the significance of current ideas in theoretical ecology for biodiversity conservation. This paper aims to provide a platform for such discussion by presenting a critical synthesis of recent ecological literature that (1) identifies core issues in ecological theory, and (2) explores the implications of current ecological thinking for biodiversity conservation.
Resumo:
Global biodiversity loss and its consequences for human welfare and sustainable development have become major concerns. Economists have, therefore, given increasing attention to the policy issues involved in the management of genetic resources. To do so, they often apply empirical methods developed in behavioral and experimental economics to estimate economic values placed on genetic resources. This trend away from almost exclusive dependence on axiomatic methods is welcomed. However, major valuation methods used in behavioral economics raise new scientific challenges. Possibly the most important of these include deficiencies in the knowledge of the public (and researchers) about genetic resources, implications for the formation of values of supplying information to focal individuals, and limits to rationality. These issues are explored for stated-preference techniques of valuation (e.g., contingent valuation) as well as revealed preference techniques, especially the travel cost method. They are illustrated by Australian and Asian examples. Taking into account behavioral and psychological models and empirical evidence, particular attention is given to how elicitation of preferences, and supply of information to individuals, influences their preferences about biodiversity. Policy consequences are outlined.
Resumo:
Dissertation presented to the Faculty of Sciences and Technology of New University of Lisbon in fulfilment of the requirements for the Master’s degree in Conservation and Restoration Specialization in easel painting
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Conservação e Restauro, especialização em pintura sobre tela
Resumo:
no.3(1930)
Resumo:
In recent decades, recognition of both cultural and natural heritage has grown in the Alps. This tendency illustrates a collective identity building (local, national, alpine), but it also highlights, in the current context of global change, a renewed reflection of man's relationship with the environment. Thus, a fundamental and scientific intrinsic value (as a part of wilderness) tends to be recognized in the natural heritage as a whole. However, geoheritage (and geodiversity) is still often perceived as a secondary natural component, compared with bioheritage (and biodiversity). In this context, we study the geomorphological heritage (landforms and the processes that shape them) of Les Contamines-Montjoie Natural Reserve. Indeed, despite the high geomorphological richness (especially glacial) of the reserve, which covers more than 4000 ha of the Mont-Blanc Massif, local recognition of this heritage is still limited. In order to recognize and protect it, and starting with a scientific study, this research identifies the main local richness and assesses the geotourist and educational potentials. Finally, several tools to educate and promote geoheritage (educational paths and website) are proposed.
Resumo:
Substantial investment in climate change research has led to dire predictions of the impacts and risks to biodiversity. The Intergovernmental Panel on Climate Change fourth assessment report(1) cites 28,586 studies demonstrating significant biological changes in terrestrial systems(2). Already high extinction rates, driven primarily by habitat loss, are predicted to increase under climate change(3-6). Yet there is little specific advice or precedent in the literature to guide climate adaptation investment for conserving biodiversity within realistic economic constraints(7). Here we present a systematic ecological and economic analysis of a climate adaptation problem in one of the world's most species-rich and threatened ecosystems: the South African fynbos. We discover a counterintuitive optimal investment strategy that switches twice between options as the available adaptation budget increases. We demonstrate that optimal investment is nonlinearly dependent on available resources, making the choice of how much to invest as important as determining where to invest and what actions to take. Our study emphasizes the importance of a sound analytical framework for prioritizing adaptation investments(4). Integrating ecological predictions in an economic decision framework will help support complex choices between adaptation options under severe uncertainty. Our prioritization method can be applied at any scale to minimize species loss and to evaluate the robustness of decisions to uncertainty about key assumptions.
Resumo:
Increasing anthropogenic pressures urge enhanced knowledge and understanding of the current state of marine biodiversity. This baseline information is pivotal to explore present trends, detect future modifications and propose adequate management actions for marine ecosystems. Coralligenous outcrops are a highly diverse and structurally complex deep-water habitat faced with major threats in the Mediterranean Sea. Despite its ecological, aesthetic and economic value, coralligenous biodiversity patterns are still poorly understood. There is currently no single sampling method that has been demonstrated to be sufficiently representative to ensure adequate community assessment and monitoring in this habitat. Therefore, we propose a rapid non-destructive protocol for biodiversity assessment and monitoring of coralligenous outcrops providing good estimates of its structure and species composition, based on photographic sampling and the determination of presence/absence of macrobenthic species. We used an extensive photographic survey, covering several spatial scales (100s of m to 100s of km) within the NW Mediterranean and including 2 different coralligenous assemblages: Paramuricea clavata (PCA) and Corallium rubrum assemblage (CRA). This approach allowed us to determine the minimal sampling area for each assemblage (5000 cm² for PCA and 2500 cm²for CRA). In addition, we conclude that 3 replicates provide an optimal sampling effort in order to maximize the species number and to assess the main biodiversity patterns of studied assemblages in variability studies requiring replicates. We contend that the proposed sampling approach provides a valuable tool for management and conservation planning, monitoring and research programs focused on coralligenous outcrops, potentially also applicable in other benthic ecosystems