889 resultados para Wetland conservation
Resumo:
In Situ preservation is a core strategy for the conservation and management of waterlogged remains at wetland sites. Inorganic and organic remains can, however, quickly become degraded, or lost entirely, as a result of chemical or hydrological changes. Monitoring is therefore crucial in identifying baseline data for a site, the extent of spatial and or temporal variability, and in evaluating the potential impacts of these variables on current and future In Situ preservation potential. Since August 2009, monthly monitoring has taken place at the internationally important Iron Age site of Glastonbury Lake Village in the Somerset Levels, UK. A spatial, stratigraphic, and analytical approach to the analysis of sediment horizons and monitoring of groundwater chemistry, redox potential, water table depth and soil moisture (using TDR) was used to characterize the site. Significant spatial and temporal variability has been identified, with results from water-table monitoring and some initial chemical analysis from Glastonbury presented here. It appears that during dry periods parts of this site are at risk from desiccation. Analysis of the chemical data, in addition to integrating the results from the other parameters, is ongoing, with the aim of clarifying the risk to the entire site.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
AIM: The main goal of this research was to investigate the influence of the hydrological pulses on the space-temporal dynamics of physical and chemical variables in a wetland adjacent to Jacupiranguinha River (São Paulo, Brazil); METHODS: Eleven sampling points were distributed among the wetland, a tributary by its left side and the adjacent river. Four samplings were carried out, covering the rainy and the dry periods. Measures of pH, dissolved oxygen, electrical conductivity and redox potential were taken in regular intervals of the water column using a multiparametric probe. Water samples were collected for the nitrogen and total phosphorus analysis, as well as their dissolved fractions (dissolved inorganic phosphorus, total dissolved phosphorus, ammoniacal nitrogen and nitrate). Total alkalinity and suspended solids were also quantified; RESULTS: The Multivariate Analysis of Variance showed the influence of the seasonality on the variability of the investigated variables, while the Principal Component Analysis gave rise in two statistical significant axes, which delimited two groups representative of the rainy and dry periods. Hydrological pulses from Jacupiranguinha River, besides contributing to the inputs of nutrients and sediments during the period of connectivity, accounted for the decrease in spatial gradients in the wetland. This "homogenization effect" was evidenced by the Cluster Analysis. The research also showed an industrial raw effluent as the main point source of phosphorus to the Jacupiranguinha River and, indirectly, to the wetland; CONCLUSIONS: Therefore, considering the scarcity of information about the wetlands in the study area, this research, besides contributing to the understanding of the influence of hydrological pulses on the investigated environmental variables, showed the need for adoption of conservation policies of these ecosystems face the increase anthropic pressures that they have been submitted, which may result in lack of their ecological, social and economic functions.
Resumo:
The giant tortoises of the Galapagos have become greatly depleted since European discovery of the islands in the 16th Century, with populations declining from an estimated 250000 to between 8000 and 14000 in the 1970s. Successful tortoise conservation efforts have focused on species recovery, but ecosystem conservation and restoration requires a better understanding of the wider ecological consequences of this drastic reduction in the archipelago's only large native herbivore. We report the first evidence from palaeoecological records of coprophilous fungal spores of the formerly more extensive geographical range of giant tortoises in the highlands of Santa Cruz Island. Upland tortoise populations on Santa Cruz declined 500-700years ago, likely the result of human impact or possible climatic change. Former freshwater wetlands, a now limited habitat-type, were found to have converted to Sphagnum bogs concomitant with tortoise loss, subsequently leading to the decline of several now-rare or extinct plant species.
Resumo:
A higher risk of future range losses as a result of climate change is expected to be one of the main drivers of extinction trends in vascular plants occurring in habitat types of high conservation value. Nevertheless, the impact of the climate changes of the last 60 years on the current distribution and extinction patterns of plants is still largely unclear. We applied species distribution models to study the impact of environmental variables (climate, soil conditions, land cover, topography), on the current distribution of 18 vascular plant species characteristic of three threatened habitat types in southern Germany: (i) xero-thermophilous vegetation, (ii) mesophilous mountain grasslands (mountain hay meadows and matgrass communities), and (iii) wetland habitats (bogs, fens, and wet meadows). Climate and soil variables were the most important variables affecting plant distributions at a spatial level of 10 × 10 km. Extinction trends in our study area revealed that plant species which occur in wetland habitats faced higher extinction risks than those in xero-thermophilous vegetation, with the risk for species in mesophilous mountain grasslands being intermediary. For three plant species characteristic either of mesophilous mountain grasslands or wetland habitats we showed exemplarily that extinctions from 1950 to the present day have occurred at the edge of the species’ current climatic niche, indicating that climate change has likely been the main driver of extinction. This is largely consistent with current extinction trends reported in other studies. Our study indicates that the analysis of past extinctions is an appropriate means to assess the impact of climate change on species and that vulnerability to climate change is both species- and habitat-specific.
Resumo:
Neolithic and Bronze Age wetland sites around the Alps (so called pile-dwellings, Pfahlbauten or palafittes in German/French) are of outstanding universal value (UNESCO-world heritage since 2011). Typical sites are in lakes, rivers and bogs, dating between 5300 and 800 BC. Of common character is the perfect conservation of wood, textiles from plant fabrics and many other organic materials. Larger quantities of sub-fossilized wood, as in the peri-alpine sites, offer the possibility of high-precision dating by dendrochronology. Research in these wetland sites started in the mid-19th century. Through large scale rescue excavations since the 1970s and the evolution of underwater archaeology in the same period the Swiss accumulated a thorough experience with these specific sites. Research in wetland sites is shared between cantonal institutions and universities and led to a worldwide unique accumulation of knowledge. Comparable sites exist outside of the Alpine area, but in much smaller quantities. Regions like Russia (small lakes in NW-Russia) and Macedonia (medium size lakes in the border zone of Macedonia, Albania and Greece) have a high scientific potential; rivers in Ukraine are supposed to have the same type of sites.
Resumo:
The conservation of birds and their habitats is essential to maintain well-functioning ecosystems including human-dominated habitats. In simplified or homogenized landscapes, patches of natural and semi-natural habitat are essential for the survival of plant and animal populations. We compared species composition and diversity of trees and birds between gallery forests, tree islands and hedges in a Colombian savanna landscape to assess how fragmented woody plant communities affect forest bird communities and how differences in habitat characteristics influenced bird species traits and their potential ecosystem function. Bird and tree diversity was higher in forests than in tree islands and hedges. Soil depth influenced woody species distribution, and canopy cover and tree height determined bird species distribution, resulting in plant and bird communities that mainly differed between forest and non-forest habitat. Bird and tree species and traits widely co-varied. Bird species in tree islands and hedges were on average smaller, less specialized to habitat and more tolerant to disturbance than in forest, but dietary differences did not emerge. Despite being less complex and diverse than forests, hedges and tree islands significantly contribute to the conservation of forest biodiversity in the savanna matrix. Forest fragments remain essential for the conservation of forest specialists, but hedges and tree islands facilitate spillover of more tolerant forest birds and their ecological functions such as seed dispersal from forest to the savanna matrix.
Resumo:
The expected changes on rainfall in the next decades may cause significant changes of the hydroperiod of temporary wetlands and, consequently, shifts on plant community distributions. Predicting plant community responses to changes in the hydroperiod is a key issue for conservation and management of temporary wetlands. We present a predictive distribution model for Arthrocnemum macrostachyum communities in the Doñana wetland (Southern Spain). Logistic regression was used to fit the model using the number of days of inundation and the mean water height as predictors. The internal validation of the model yielded good performance measures. The model was applied to a set of expected scenarios of changes in the hydroperiod to anticipate the most likely shifts in the distribution of Arthrocnemum macrostachyum communities.
Resumo:
Climate change impacts are expected to affect rice farming and wetlands welfare in the Doñana protected Area, due to decreases in quantity and quality water supply and higher temperatures. The largest rice farming area is closely located to the Doñana wetlands in the Guadalquivir river basin estuary (South Western of Spain).
Resumo:
U.S. Air Force installations by virtue of their isolation and often remote locations provide protection to critical habitats that would otherwise be susceptible to development and other stressors. While Air Force activities may not always compliment environmental protection, a balance between environmental protection and Air Force requirements must be achieved to minimize conflict. Special Area Management Plans (SAMPs) are a possible solution in the quest to balance conservation with mission requirements. Beale Air Force Base, California is the first military installation to pursue implementation of a SAMP. This project found that SAMP implementation could be a tool to successfully balance conservation efforts with military requirements on other Air Force installations; however, further education on the SAMP process would be required.
Resumo:
"May 1991."
Resumo:
"December 2000."
Resumo:
Over the past 200 years, an estimated 53% (about 47 million ha) of the original wetlands in the conterminous United States have been lost, mainly as a result of various human activities. Despite the importance of wetlands (particularly along the coast), and a longstanding federal policy framework meant to protect their integrity, the cumulative impact on these natural systems over large areas is poorly understood. We address this lack of research by mapping and conducting descriptive spatial analyses of federal wetland alteration permits (pursuant to section 404 of the Clean Water Act) across 85 watersheds in Florida and coastal Texas from 1991 to 2003. Results show that more than half of the permits issued in both states (60%) fell under the Nationwide permitting category. Permits issued in Texas were typically located outside of urban areas (78%) and outside 100-year floodplains (61%). More than half of permits issued in Florida were within urban areas (57%) and outside of 100-year floodplains (51%). The most affected wetlands types were estuarine in Texas (47%) and palustrine in Florida (55%). We expect that an additional outcome of this work will be an increased awareness of the cumulative depletion of wetlands and loss of ecological services in these urbanized areas, perhaps leading to increased conservation efforts.
Resumo:
Interferometric synthetic aperture radar (InSAR) techniques can successfully detect phase variations related to the water level changes in wetlands and produce spatially detailed high-resolution maps of water level changes. Despite the vast details, the usefulness of the wetland InSAR observations is rather limited, because hydrologists and water resources managers need information on absolute water level values and not on relative water level changes. We present an InSAR technique called Small Temporal Baseline Subset (STBAS) for monitoring absolute water level time series using radar interferograms acquired successively over wetlands. The method uses stage (water level) observation for calibrating the relative InSAR observations and tying them to the stage's vertical datum. We tested the STBAS technique with two-year long Radarsat-1 data acquired during 2006–2008 over the Water Conservation Area 1 (WCA1) in the Everglades wetlands, south Florida (USA). The InSAR-derived water level data were calibrated using 13 stage stations located in the study area to generate 28 successive high spatial resolution maps (50 m pixel resolution) of absolute water levels. We evaluate the quality of the STBAS technique using a root mean square error (RMSE) criterion of the difference between InSAR observations and stage measurements. The average RMSE is 6.6 cm, which provides an uncertainty estimation of the STBAS technique to monitor absolute water levels. About half of the uncertainties are attributed to the accuracy of the InSAR technique to detect relative water levels. The other half reflects uncertainties derived from tying the relative levels to the stage stations' datum.