827 resultados para Weighted summation inequalities


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grouping users in social networks is an important process that improves matching and recommendation activities in social networks. The data mining methods of clustering can be used in grouping the users in social networks. However, the existing general purpose clustering algorithms perform poorly on the social network data due to the special nature of users' data in social networks. One main reason is the constraints that need to be considered in grouping users in social networks. Another reason is the need of capturing large amount of information about users which imposes computational complexity to an algorithm. In this paper, we propose a scalable and effective constraint-based clustering algorithm based on a global similarity measure that takes into consideration the users' constraints and their importance in social networks. Each constraint's importance is calculated based on the occurrence of this constraint in the dataset. Performance of the algorithm is demonstrated on a dataset obtained from an online dating website using internal and external evaluation measures. Results show that the proposed algorithm is able to increases the accuracy of matching users in social networks by 10% in comparison to other algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reliable pollutant build-up prediction plays a critical role in the accuracy of urban stormwater quality modelling outcomes. However, water quality data collection is resource demanding compared to streamflow data monitoring, where a greater quantity of data is generally available. Consequently, available water quality data sets span only relatively short time scales unlike water quantity data. Therefore, the ability to take due consideration of the variability associated with pollutant processes and natural phenomena is constrained. This in turn gives rise to uncertainty in the modelling outcomes as research has shown that pollutant loadings on catchment surfaces and rainfall within an area can vary considerably over space and time scales. Therefore, the assessment of model uncertainty is an essential element of informed decision making in urban stormwater management. This paper presents the application of a range of regression approaches such as ordinary least squares regression, weighted least squares Regression and Bayesian Weighted Least Squares Regression for the estimation of uncertainty associated with pollutant build-up prediction using limited data sets. The study outcomes confirmed that the use of ordinary least squares regression with fixed model inputs and limited observational data may not provide realistic estimates. The stochastic nature of the dependent and independent variables need to be taken into consideration in pollutant build-up prediction. It was found that the use of the Bayesian approach along with the Monte Carlo simulation technique provides a powerful tool, which attempts to make the best use of the available knowledge in the prediction and thereby presents a practical solution to counteract the limitations which are otherwise imposed on water quality modelling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes an efficient and online learning control system that uses the successful Model Predictive Control (MPC) method in a model based locally weighted learning framework. The new approach named Locally Weighted Learning Model Predictive Control (LWL-MPC) has been proposed as a solution to learn to control complex and nonlinear Elastic Joint Robots (EJR). Elastic Joint Robots are generally difficult to learn to control due to their elastic properties preventing standard model learning techniques from being used, such as learning computed torque control. This paper demonstrates the capability of LWL-MPC to perform online and incremental learning while controlling the joint positions of a real three Degree of Freedom (DoF) EJR. An experiment on a real EJR is presented and LWL-MPC is shown to successfully learn to control the system to follow two different figure of eight trajectories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Image representations derived from simplified models of the primary visual cortex (V1), such as HOG and SIFT, elicit good performance in a myriad of visual classification tasks including object recognition/detection, pedestrian detection and facial expression classification. A central question in the vision, learning and neuroscience communities regards why these architectures perform so well. In this paper, we offer a unique perspective to this question by subsuming the role of V1-inspired features directly within a linear support vector machine (SVM). We demonstrate that a specific class of such features in conjunction with a linear SVM can be reinterpreted as inducing a weighted margin on the Kronecker basis expansion of an image. This new viewpoint on the role of V1-inspired features allows us to answer fundamental questions on the uniqueness and redundancies of these features, and offer substantial improvements in terms of computational and storage efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction and aims: Individual smokers from disadvantaged backgrounds are less likely to quit, which contributes to widening inequalities in smoking. Residents of disadvantaged neighbourhoods are more likely to smoke, and neighbourhood inequalities in smoking may also be widening because of neighbourhood differences in rates of cessation. This study examined the association between neighbourhood disadvantage and smoking cessation and its relationship with neighbourhood inequalities in smoking. Design and methods: A multilevel longitudinal study of mid-aged (40-67 years) residents (n=6915) of Brisbane, Australia, who lived in the same neighbourhoods (n=200) in 2007 and 2009. Neighbourhood inequalities in cessation and smoking were analysed using multilevel logistic regression and Markov chain Monte Carlo simulation. Results: After adjustment for individual-level socioeconomic factors, the probability of quitting smoking between 2007 and 2009 was lower for residents of disadvantaged neighbourhoods (9.0%-12.8%) than their counterparts in more advantaged neighbourhoods (20.7%-22.5%). These inequalities in cessation manifested in widening inequalities in smoking: in 2007 the between-neighbourhood variance in rates of smoking was 0.242 (p≤0.001) and in 2009 it was 0.260 (p≤0.001). In 2007, residents of the most disadvantaged neighbourhoods were 88% (OR 1.88, 95% CrI 1.41-2.49) more likely to smoke than residents in the least disadvantaged neighbourhoods: the corresponding difference in 2009 was 98% (OR 1.98 95% CrI 1.48-2.66). Conclusion: Fundamentally, social and economic inequalities at the neighbourhood and individual-levels cause smoking and cessation inequalities. Reducing these inequalities will require comprehensive, well-funded, and targeted tobacco control efforts and equity based policies that address the social and economic determinants of smoking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The mechanisms underlying socioeconomic inequalities in mortality from cardiovascular diseases (CVD) are largely unknown. We studied the contribution of childhood socioeconomic conditions and adulthood risk factors to inequalities in CVD mortality in adulthood. Methods The prospective GLOBE study was carried out in the Netherlands, with baseline data from 1991, and linked with the cause of death register in 2007. At baseline, participants reported on adulthood socioeconomic position (SEP) (own educational level), childhood socioeconomic conditions (occupational level of respondent’s father), and a broad range of adulthood risk factors (health behaviours, material circumstances, psychosocial factors). This present study is based on 5,395 men and 6,306 women, and the data were analysed using Cox regression models and hazard ratios (HR). Results A low adulthood SEP was associated with increased CVD mortality for men (HR 1.84; 95% CI: 1.41-2.39) and women (HR 1.80; 95%CI: 1.04-3.10). Those with poorer childhood socioeconomic conditions were more likely to die from CVD in adulthood, but this reached statistical significance only among men with the poorest childhood socioeconomic circumstances. About half of the investigated adulthood risk factors showed significant associations with CVD mortality among both men and women, namely renting a house, experiencing financial problems, smoking, physical activity and marital status. Alcohol consumption and BMI showed a U-shaped relationship with CVD mortality among women, with the risk being significantly greater for both abstainers and heavy drinkers, and among women who were underweight or obese. Among men, being single or divorced and using sleep/anxiety drugs increased the risk of CVD mortality. In explanatory models, the largest contributor to adulthood CVD inequalities were material conditions for men (42%; 95% CI: −73 to −20) and behavioural factors for women (55%; 95% CI: -191 to −28). Simultaneous adjustment for adulthood risk factors and childhood socioeconomic conditions attenuated the HR for the lowest adulthood SEP to 1.34 (95% CI: 0.99-1.82) for men and 1.19 (95% CI: 0.65-2.15) for women. Conclusions Adulthood material, behavioural and psychosocial factors played a major role in the explanation of adulthood SEP inequalities in CVD mortality. Childhood socioeconomic circumstances made a modest contribution, mainly via their association with adulthood risk factors. Policies and interventions to reduce health inequalities are likely to be most effective when considering the influence of socioeconomic circumstances across the entire life course and in particular, poor material conditions and unhealthy behaviours in adulthood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: IpRGCs mediate non-image forming functions including photoentrainment and the pupil light reflex (PLR). Temporal summation increases visual sensitivity and decreases temporal resolution for image forming vision, but the summation properties of nonimage forming vision are unknown. We investigated the temporal summation of inner (ipRGC) and outer (rod/cone) retinal inputs to the PLR. Method: The consensual PLR of the left eye was measured in six participants with normal vision using a Maxwellian view infrared pupillometer. Temporal summation was investigated using a double-pulse protocol (100 ms stimulus pairs; 0–1024 ms inter-stimulus interval, ISI) presented to the dilated fellow right eye (Tropicamide 1%). Stimulus lights (blue λmax = 460 nm; red λmax = 638 nm) biased activity to inneror outer retinal inputs to non-image forming vision. Temporal summation was measured suprathreshold (15.2 log photons.cm−2.s−1 at the cornea) and subthreshold (11.4 log photons.cm−2.s−1 at the cornea). Results: RM-ANOVAs showed the suprathreshold and subthreshold 6 second post illumination pupil response (PIPR: expressed as percentage baseline diameter) did not significantly vary for red or blue stimuli (p > .05). The PIPR for a subthreshold red 16 ms double-pulse control condition did not significantly differ with ISI (p > .05). The maximum constriction amplitude for red and blue 100 ms double- pulse stimuli did not significantly vary with ISI (p > .05). Conclusion: The non-significant changes in suprathreshold PIPR and subthreshold maximum pupil constriction indicate that inner retinal ipRGC inputs and outer retinal photoreceptor inputs to the PLR do not show temporal summation. The results suggest a fundamental difference between the temporal summation characteristics of image forming and non-image forming vision.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Process mining encompasses the research area which is concerned with knowledge discovery from event logs. One common process mining task focuses on conformance checking, comparing discovered or designed process models with actual real-life behavior as captured in event logs in order to assess the “goodness” of the process model. This paper introduces a novel conformance checking method to measure how well a process model performs in terms of precision and generalization with respect to the actual executions of a process as recorded in an event log. Our approach differs from related work in the sense that we apply the concept of so-called weighted artificial negative events towards conformance checking, leading to more robust results, especially when dealing with less complete event logs that only contain a subset of all possible process execution behavior. In addition, our technique offers a novel way to estimate a process model’s ability to generalize. Existing literature has focused mainly on the fitness (recall) and precision (appropriateness) of process models, whereas generalization has been much more difficult to estimate. The described algorithms are implemented in a number of ProM plugins, and a Petri net conformance checking tool was developed to inspect process model conformance in a visual manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we explore the effectiveness of patch-based gradient feature extraction methods when applied to appearance-based gait recognition. Extending existing popular feature extraction methods such as HOG and LDP, we propose a novel technique which we term the Histogram of Weighted Local Directions (HWLD). These 3 methods are applied to gait recognition using the GEI feature, with classification performed using SRC. Evaluations on the CASIA and OULP datasets show significant improvements using these patch-based methods over existing implementations, with the proposed method achieving the highest recognition rate for the respective datasets. In addition, the HWLD can easily be extended to 3D, which we demonstrate using the GEV feature on the DGD dataset, observing improvements in performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background To explore the impact of geographical remoteness and area-level socioeconomic disadvantage on colorectal cancer (CRC) survival. Methods Multilevel logistic regression and Markov chain Monte Carlo simulations were used to analyze geographical variations in five-year all-cause and CRC-specific survival across 478 regions in Queensland Australia for 22,727 CRC cases aged 20–84 years diagnosed from 1997–2007. Results Area-level disadvantage and geographic remoteness were independently associated with CRC survival. After full multivariate adjustment (both levels), patients from remote (odds Ratio [OR]: 1.24, 95%CrI: 1.07-1.42) and more disadvantaged quintiles (OR = 1.12, 1.15, 1.20, 1.23 for Quintiles 4, 3, 2 and 1 respectively) had lower CRC-specific survival than major cities and least disadvantaged areas. Similar associations were found for all-cause survival. Area disadvantage accounted for a substantial amount of the all-cause variation between areas. Conclusions We have demonstrated that the area-level inequalities in survival of colorectal cancer patients cannot be explained by the measured individual-level characteristics of the patients or their cancer and remain after adjusting for cancer stage. Further research is urgently needed to clarify the factors that underlie the survival differences, including the importance of geographical differences in clinical management of CRC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes an online learning control system that uses the strategy of Model Predictive Control (MPC) in a model based locally weighted learning framework. The new approach, named Locally Weighted Learning Model Predictive Control (LWL-MPC), is proposed as a solution to learn to control robotic systems with nonlinear and time varying dynamics. This paper demonstrates the capability of LWL-MPC to perform online learning while controlling the joint trajectories of a low cost, three degree of freedom elastic joint robot. The learning performance is investigated in both an initial learning phase, and when the system dynamics change due to a heavy object added to the tool point. The experiment on the real elastic joint robot is presented and LWL-MPC is shown to successfully learn to control the system with and without the object. The results highlight the capability of the learning control system to accommodate the lack of mechanical consistency and linearity in a low cost robot arm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to examine whether takeaway food consumption mediated (explained) the association between socioeconomic position and body mass index (BMI). A postal-survey was conducted among 1500 randomly selected adults aged between 25 and 64 years in Brisbane, Australia during 2009 (response rate 63.7%, N=903). BMI was calculated using self-reported weight and height. Participants reported usual takeaway food consumption, and these takeaway items were categorised into "healthy" and "less healthy" choices. Socioeconomic position was ascertained by education, household income, and occupation. The mean BMI was 27.1kg/m(2) for men and 25.7kg/m(2) for women. Among men, none of the socioeconomic measures were associated with BMI. In contrast, women with diploma/vocational education (β=2.12) and high school only (β=2.60), and those who were white-collar (β=1.55) and blue-collar employees (β=2.83) had significantly greater BMI compared with their more advantaged counterparts. However, household income was not associated with BMI. Among women, the consumption of "less healthy" takeaway food mediated BMI differences between the least and most educated, and between those employed in blue collar occupations and their higher status counterparts. Decreasing the consumption of "less healthy" takeaway options may reduce socioeconomic inequalities in overweight and obesity among women but not men.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genomic sequences are fundamentally text documents, admitting various representations according to need and tokenization. Gene expression depends crucially on binding of enzymes to the DNA sequence at small, poorly conserved binding sites, limiting the utility of standard pattern search. However, one may exploit the regular syntactic structure of the enzyme's component proteins and the corresponding binding sites, framing the problem as one of detecting grammatically correct genomic phrases. In this paper we propose new kernels based on weighted tree structures, traversing the paths within them to capture the features which underpin the task. Experimentally, we and that these kernels provide performance comparable with state of the art approaches for this problem, while offering significant computational advantages over earlier methods. The methods proposed may be applied to a broad range of sequence or tree-structured data in molecular biology and other domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recurrence relations in mathematics form a very powerful and compact way of looking at a wide range of relationships. Traditionally, the concept of recurrence has often been a difficult one for the secondary teacher to convey to students. Closely related to the powerful proof technique of mathematical induction, recurrences are able to capture many relationships in formulas much simpler than so-called direct or closed formulas. In computer science, recursive coding often has a similar compactness property, and, perhaps not surprisingly, suffers from similar problems in the classroom as recurrences: the students often find both the basic concepts and practicalities elusive. Using models designed to illuminate the relevant principles for the students, we offer a range of examples which use the modern spreadsheet environment to powerfully illustrate the great expressive and computational power of recurrences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE To compare diffusion-weighted functional magnetic resonance imaging (DfMRI), a novel alternative to the blood oxygenation level-dependent (BOLD) contrast, in a functional MRI experiment. MATERIALS AND METHODS Nine participants viewed contrast reversing (7.5 Hz) black-and-white checkerboard stimuli using block and event-related paradigms. DfMRI (b = 1800 mm/s2 ) and BOLD sequences were acquired. Four parameters describing the observed signal were assessed: percent signal change, spatial extent of the activation, the Euclidean distance between peak voxel locations, and the time-to-peak of the best fitting impulse response for different paradigms and sequences. RESULTS The BOLD conditions showed a higher percent signal change relative to DfMRI; however, event-related DfMRI showed the strongest group activation (t = 21.23, P < 0.0005). Activation was more diffuse and spatially closer to the BOLD response for DfMRI when the block design was used. DfMRIevent showed the shortest TTP (4.4 +/- 0.88 sec). CONCLUSION The hemodynamic contribution to DfMRI may increase with the use of block designs.