888 resultados para Web modelling methods
Resumo:
Analyzing geographical patterns by collocating events, objects or their attributes has a long history in surveillance and monitoring, and is particularly applied in environmental contexts, such as ecology or epidemiology. The identification of patterns or structures at some scales can be addressed using spatial statistics, particularly marked point processes methodologies. Classification and regression trees are also related to this goal of finding "patterns" by deducing the hierarchy of influence of variables on a dependent outcome. Such variable selection methods have been applied to spatial data, but, often without explicitly acknowledging the spatial dependence. Many methods routinely used in exploratory point pattern analysis are2nd-order statistics, used in a univariate context, though there is also a wide literature on modelling methods for multivariate point pattern processes. This paper proposes an exploratory approach for multivariate spatial data using higher-order statistics built from co-occurrences of events or marks given by the point processes. A spatial entropy measure, derived from these multinomial distributions of co-occurrences at a given order, constitutes the basis of the proposed exploratory methods. © 2010 Elsevier Ltd.
Resumo:
Background - Modelling the interaction between potentially antigenic peptides and Major Histocompatibility Complex (MHC) molecules is a key step in identifying potential T-cell epitopes. For Class II MHC alleles, the binding groove is open at both ends, causing ambiguity in the positional alignment between the groove and peptide, as well as creating uncertainty as to what parts of the peptide interact with the MHC. Moreover, the antigenic peptides have variable lengths, making naive modelling methods difficult to apply. This paper introduces a kernel method that can handle variable length peptides effectively by quantifying similarities between peptide sequences and integrating these into the kernel. Results - The kernel approach presented here shows increased prediction accuracy with a significantly higher number of true positives and negatives on multiple MHC class II alleles, when testing data sets from MHCPEP [1], MCHBN [2], and MHCBench [3]. Evaluation by cross validation, when segregating binders and non-binders, produced an average of 0.824 AROC for the MHCBench data sets (up from 0.756), and an average of 0.96 AROC for multiple alleles of the MHCPEP database. Conclusion - The method improves performance over existing state-of-the-art methods of MHC class II peptide binding predictions by using a custom, knowledge-based representation of peptides. Similarity scores, in contrast to a fixed-length, pocket-specific representation of amino acids, provide a flexible and powerful way of modelling MHC binding, and can easily be applied to other dynamic sequence problems.
Resumo:
In the deregulated Power markets it is necessary to have a appropriate Transmission Pricing methodology that also takes into account “Congestion and Reliability”, in order to ensure an economically viable, equitable, and congestion free power transfer capability, with high reliability and security. This thesis presents results of research conducted on the development of a Decision Making Framework (DMF) of concepts and data analytic and modelling methods for the Reliability benefits Reflective Optimal “cost evaluation for the calculation of Transmission Cost” for composite power systems, using probabilistic methods. The methodology within the DMF devised and reported in this thesis, utilises a full AC Newton-Raphson load flow and a Monte-Carlo approach to determine, Reliability Indices which are then used for the proposed Meta-Analytical Probabilistic Approach (MAPA) for the evaluation and calculation of the Reliability benefit Reflective Optimal Transmission Cost (ROTC), of a transmission system. This DMF includes methods for transmission line embedded cost allocation among transmission transactions, accounting for line capacity-use as well as congestion costing that can be used for pricing using application of Power Transfer Distribution Factor (PTDF) as well as Bialek’s method to determine a methodology which consists of a series of methods and procedures as explained in detail in the thesis for the proposed MAPA for ROTC. The MAPA utilises the Bus Data, Generator Data, Line Data, Reliability Data and Customer Damage Function (CDF) Data for the evaluation of Congestion, Transmission and Reliability costing studies using proposed application of PTDF and other established/proven methods which are then compared, analysed and selected according to the area/state requirements and then integrated to develop ROTC. Case studies involving standard 7-Bus, IEEE 30-Bus and 146-Bus Indian utility test systems are conducted and reported throughout in the relevant sections of the dissertation. There are close correlation between results obtained through proposed application of PTDF method with the Bialek’s and different MW-Mile methods. The novel contributions of this research work are: firstly the application of PTDF method developed for determination of Transmission and Congestion costing, which are further compared with other proved methods. The viability of developed method is explained in the methodology, discussion and conclusion chapters. Secondly the development of comprehensive DMF which helps the decision makers to analyse and decide the selection of a costing approaches according to their requirements. As in the DMF all the costing approaches have been integrated to achieve ROTC. Thirdly the composite methodology for calculating ROTC has been formed into suits of algorithms and MATLAB programs for each part of the DMF, which are further described in the methodology section. Finally the dissertation concludes with suggestions for Future work.
Resumo:
This study proposes a conceptual framework that explores the correlations between economic dependence (ED), local government management of tourism (GMT), perceived tourism benefits and costs, and support for sustainable tourism development (STD). A quantitative research design was adopted. Data collection was carried out by personal survey applied to 300 residents of the small historic town of Lamego, located within the Douro Valley World Heritage Site. Structural equation modelling methods were employed to analyse the proposed model. Results suggest that GMT has a significant effect on the perceived impacts of tourism, both in the positive and in the negative. The effect of GMT in fostering residents’ support to STD was also empirically supported. Additionally, it was also determined that positive perceptions of the impacts of tourism directly influence support to STD. Nevertheless, ED does not have a significant effect either on perceivedbenefits, nor on perceived costs or on residents’ support to STD. Likewise, perceptions of the negative impacts do not predict residents’ support to STD.
Resumo:
In our research we investigate the output accuracy of discrete event simulation models and agent based simulation models when studying human centric complex systems. In this paper we focus on human reactive behaviour as it is possible in both modelling approaches to implement human reactive behaviour in the model by using standard methods. As a case study we have chosen the retail sector, and here in particular the operations of the fitting room in the women wear department of a large UK department store. In our case study we looked at ways of determining the efficiency of implementing new management policies for the fitting room operation through modelling the reactive behaviour of staff and customers of the department. First, we have carried out a validation experiment in which we compared the results from our models to the performance of the real system. This experiment also allowed us to establish differences in output accuracy between the two modelling methods. In a second step a multi-scenario experiment was carried out to study the behaviour of the models when they are used for the purpose of operational improvement. Overall we have found that for our case study example both, discrete event simulation and agent based simulation have the same potential to support the investigation into the efficiency of implementing new management policies.
Resumo:
Developing a robust method to study characteristics of vascular flow using ultrasound may be useful to assess endothelial function and vasodilatation. There are four stages in this proposal. 1.The first stage is to standardise and validate the methodology to enable computational risk flow data and other flow characteristics to be used clinically. (Current Study). Further development of fluid modelling methods will enable particulate haemodynamics to be investigated, and incorporate detailed endothelial structure together with cellular pathways. 2. This should be followed up by studies in different patient groups investigating the association between the derived values and estimated risk (using other methods such as Framingham risk score). 3. Then, associated with underlying cardiovascular risk, prospective studies would be made to establish whether computational flow dynamic data can predict outcome. If successful it could prove to be a very useful marker of benefit following treatment in a clinical setting.
Resumo:
Computational models complement laboratory experimentation for efficient identification of MHC-binding peptides and T-cell epitopes. Methods for prediction of MHC-binding peptides include binding motifs, quantitative matrices, artificial neural networks, hidden Markov models, and molecular modelling. Models derived by these methods have been successfully used for prediction of T-cell epitopes in cancer, autoimmunity, infectious disease, and allergy. For maximum benefit, the use of computer models must be treated as experiments analogous to standard laboratory procedures and performed according to strict standards. This requires careful selection of data for model building, and adequate testing and validation. A range of web-based databases and MHC-binding prediction programs are available. Although some available prediction programs for particular MHC alleles have reasonable accuracy, there is no guarantee that all models produce good quality predictions. In this article, we present and discuss a framework for modelling, testing, and applications of computational methods used in predictions of T-cell epitopes. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
This work is devoted to the problem of reconstructing the basis weight structure at paper web with black{box techniques. The data that is analyzed comes from a real paper machine and is collected by an o®-line scanner. The principal mathematical tool used in this work is Autoregressive Moving Average (ARMA) modelling. When coupled with the Discrete Fourier Transform (DFT), it gives a very flexible and interesting tool for analyzing properties of the paper web. Both ARMA and DFT are independently used to represent the given signal in a simplified version of our algorithm, but the final goal is to combine the two together. Ljung-Box Q-statistic lack-of-fit test combined with the Root Mean Squared Error coefficient gives a tool to separate significant signals from noise.
Resumo:
Carbon (C) and nitrogen (N) process-based models are important tools for estimating and reporting greenhouse gas emissions and changes in soil C stocks. There is a need for continuous evaluation, development and adaptation of these models to improve scientific understanding, national inventories and assessment of mitigation options across the world. To date, much of the information needed to describe different processes like transpiration, photosynthesis, plant growth and maintenance, above and below ground carbon dynamics, decomposition and nitrogen mineralization. In ecosystem models remains inaccessible to the wider community, being stored within model computer source code, or held internally by modelling teams. Here we describe the Global Research Alliance Modelling Platform (GRAMP), a web-based modelling platform to link researchers with appropriate datasets, models and training material. It will provide access to model source code and an interactive platform for researchers to form a consensus on existing methods, and to synthesize new ideas, which will help to advance progress in this area. The platform will eventually support a variety of models, but to trial the platform and test the architecture and functionality, it was piloted with variants of the DNDC model. The intention is to form a worldwide collaborative network (a virtual laboratory) via an interactive website with access to models and best practice guidelines; appropriate datasets for testing, calibrating and evaluating models; on-line tutorials and links to modelling and data provider research groups, and their associated publications. A graphical user interface has been designed to view the model development tree and access all of the above functions.
Resumo:
A version of the Agricultural Production Systems Simulator (APSIM) capable of simulating the key agronomic aspects of intercropping maize between legume shrub hedgerows was described and parameterised in the first paper of this series (Nelson et al., this issue). In this paper, APSIM is used to simulate maize yields and soil erosion from traditional open-field farming and hedgerow intercropping in the Philippine uplands. Two variants of open-field farming were simulated using APSIM, continuous and fallow, for comparison with intercropping maize between leguminous shrub hedgerows. Continuous open-field maize farming was predicted to be unsustainable in the long term, while fallow open-field farming was predicted to slow productivity decline by spreading the effect of erosion over a larger cropping area. Hedgerow intercropping was predicted to reduce erosion by maintaining soil surface cover during periods of intense rainfall, contributing to sustainable production of maize in the long term. In the third paper in this series, Nelson et al. (this issue) use cost-benefit analysis to compare the economic viability of hedgerow intercropping relative to traditional open-field farming of maize in relatively inaccessible upland areas. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Two previous papers in this series (Nelson et al., this issue) described the use of the Agricultural Production Systems Simulator (APSIM) to simulate the effect of erosion on maize yields from open-field farming and hedgerow intercropping in the Philippine uplands. In this paper, maize yields simulated with APSIM are used to compare the economic viability of intercropping maize between leguminous shrub hedgerows with that of continuous and fallow open-field farming of maize. The analysis focuses on the economic incentives of upland farmers to adopt hedgerow intercropping, discussing farmers' planning horizons, access to credit and security of land tenure, as well as maize pricing in the Philippines. Insecure land tenure has limited the planning horizons of upland farmers, and high establishment costs reduce the economic viability of hedgerow intercropping relative to continuous and fallow open-field farming in the short term, In the long term, high discount rates and share-tenancy arrangements in which landlords do not contribute to establishment costs reduce the economic viability of hedgerow intercropping relative to fallow open-field farming, (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Constrained and unconstrained Nonlinear Optimization Problems often appear in many engineering areas. In some of these cases it is not possible to use derivative based optimization methods because the objective function is not known or it is too complex or the objective function is non-smooth. In these cases derivative based methods cannot be used and Direct Search Methods might be the most suitable optimization methods. An Application Programming Interface (API) including some of these methods was implemented using Java Technology. This API can be accessed either by applications running in the same computer where it is installed or, it can be remotely accessed through a LAN or the Internet, using webservices. From the engineering point of view, the information needed from the API is the solution for the provided problem. On the other hand, from the optimization methods researchers’ point of view, not only the solution for the problem is needed. Also additional information about the iterative process is useful, such as: the number of iterations; the value of the solution at each iteration; the stopping criteria, etc. In this paper are presented the features added to the API to allow users to access to the iterative process data.
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores – Sistemas Digitais e Percepcionais pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.