946 resultados para Weather forecasting
Resumo:
Shipping list no.: 93-0483-P.
Resumo:
Air pollution is one of the greatest health risks in the world. At the same time, the strong correlation with climate change, as well as with Urban Heat Island and Heat Waves, make more intense the effects of all these phenomena. A good air quality and high levels of thermal comfort are the big goals to be reached in urban areas in coming years. Air quality forecast help decision makers to improve air quality and public health strategies, mitigating the occurrence of acute air pollution episodes. Air quality forecasting approaches combine an ensemble of models to provide forecasts from global to regional air pollution and downscaling for selected countries and regions. The development of models dedicated to urban air quality issues requires a good set of data regarding the urban morphology and building material characteristics. Only few examples of air quality forecast system at urban scale exist in the literature and often they are limited to selected cities. This thesis develops by setting up a methodology for the development of a forecasting tool. The forecasting tool can be adapted to all cities and uses a new parametrization for vegetated areas. The parametrization method, based on aerodynamic parameters, produce the urban spatially varying roughness. At the core of the forecasting tool there is a dispersion model (urban scale) used in forecasting mode, and the meteorological and background concentration forecasts provided by two regional numerical weather forecasting models. The tool produces the 1-day spatial forecast of NO2, PM10, O3 concentration, the air temperature, the air humidity and BLQ-Air index values. The tool is automatized to run every day, the maps produced are displayed on the e-Globus platform, updated every day. The results obtained indicate that the forecasting output were in good agreement with the observed measurements.
Resumo:
O constante crescimento dos produtores em regime especial aliado à descentralização dos pontos injetores na rede, tem permitido uma redução da importação de energia mas também tem acarretado maiores problemas para a gestão da rede. Estes problemas estão relacionados com o facto da produção estar dependente das condições climatéricas, como é o caso dos produtores eólicos, hídricos e solares. A previsão da energia produzida em função da previsão das condições climatéricas tem sido alvo de atenção por parte da comunidade empresarial do setor, pelo facto de existir modelos razoáveis para a previsão das condições climatéricas a curto prazo, e até a longo prazo. Este trabalho trata, em concreto, do problema da previsão de produção em centrais mini-hídricas, apresentando duas propostas para essa previsão. Em ambas as propostas efetua-se inicialmente a previsão do caudal que chega à central, sendo esta depois convertida em potência que é injetada na rede. Para a previsão do caudal utilizaram-se dois métodos estatísticos: o método Holt-Winters e os modelos ARMAX. Os dois modelos de previsão propostos consideram um horizonte temporal de uma semana, com discretização horária, para uma central no norte de Portugal, designadamente a central de Penide. O trabalho também contempla um pequeno estudo da bibliografia existente tanto para a previsão da produção como de afluências de centrais hidroelétricas. Aborda, ainda, conceitos relacionados com as mini-hídricas e apresenta uma caraterização do parque de centrais mini-hídricas em Portugal.
Resumo:
A new parameter is introduced: the lightning potential index (LPI), which is a measure of the potential for charge generation and separation that leads to lightning flashes in convective thunderstorms. The LPI is calculated within the charge separation region of clouds between 0 C and 20 C, where the noninductive mechanism involving collisions of ice and graupel particles in the presence of supercooled water is most effective. As shown in several case studies using the Weather Research and Forecasting (WRF) model with explicit microphysics, the LPI is highly correlated with observed lightning. It is suggested that the LPI may be a useful parameter for predicting lightning as well as a tool for improving weather forecasting of convective storms and heavy rainfall.
Resumo:
This paper analyses the predictive ability of quantitative precipitation forecasts (QPF) and the so-called "poor-man" rainfall probabilistic forecasts (RPF). With this aim, the full set of warnings issued by the Meteorological Service of Catalonia (SMC) for potentially-dangerous events due to severe precipitation has been analysed for the year 2008. For each of the 37 warnings, the QPFs obtained from the limited-area model MM5 have been verified against hourly precipitation data provided by the rain gauge network covering Catalonia (NE of Spain), managed by SMC. For a group of five selected case studies, a QPF comparison has been undertaken between the MM5 and COSMO-I7 limited-area models. Although MM5's predictive ability has been examined for these five cases by making use of satellite data, this paper only shows in detail the heavy precipitation event on the 9¿10 May 2008. Finally, the "poor-man" rainfall probabilistic forecasts (RPF) issued by SMC at regional scale have also been tested against hourly precipitation observations. Verification results show that for long events (>24 h) MM5 tends to overestimate total precipitation, whereas for short events (¿24 h) the model tends instead to underestimate precipitation. The analysis of the five case studies concludes that most of MM5's QPF errors are mainly triggered by very poor representation of some of its cloud microphysical species, particularly the cloud liquid water and, to a lesser degree, the water vapor. The models' performance comparison demonstrates that MM5 and COSMO-I7 are on the same level of QPF skill, at least for the intense-rainfall events dealt with in the five case studies, whilst the warnings based on RPF issued by SMC have proven fairly correct when tested against hourly observed precipitation for 6-h intervals and at a small region scale. Throughout this study, we have only dealt with (SMC-issued) warning episodes in order to analyse deterministic (MM5 and COSMO-I7) and probabilistic (SMC) rainfall forecasts; therefore we have not taken into account those episodes that might (or might not) have been missed by the official SMC warnings. Therefore, whenever we talk about "misses", it is always in relation to the deterministic LAMs' QPFs.
Resumo:
From 6 to 8 November 1982 one of the most catastrophic flash-flood events was recorded in the Eastern Pyrenees affecting Andorra and also France and Spain with rainfall accumulations exceeding 400 mm in 24 h, 44 fatalities and widespread damage. This paper aims to exhaustively document this heavy precipitation event and examines mesoscale simulations performed by the French Meso-NH non-hydrostatic atmospheric model. Large-scale simulations show the slow-evolving synoptic environment favourable for the development of a deep Atlantic cyclone which induced a strong southerly flow over the Eastern Pyrenees. From the evolution of the synoptic pattern four distinct phases have been identified during the event. The mesoscale analysis presents the second and the third phase as the most intense in terms of rainfall accumulations and highlights the interaction of the moist and conditionally unstable flows with the mountains. The presence of a SW low level jet (30 m s-1) around 1500 m also had a crucial role on focusing the precipitation over the exposed south slopes of the Eastern Pyrenees. Backward trajectories based on Eulerian on-line passive tracers indicate that the orographic uplift was the main forcing mechanism which triggered and maintained the precipitating systems more than 30 h over the Pyrenees. The moisture of the feeding flow mainly came from the Atlantic Ocean (7-9 g kg-1) and the role of the Mediterranean as a local moisture source was very limited (2-3 g kg-1) due to the high initial water vapour content of the parcels and the rapid passage over the basin along the Spanish Mediterranean coast (less than 12 h).
Resumo:
The Mediterranean basin is a particularly vulnerable region to climate change, partly due to its quite unique character that results both from physiographic conditions and societal development. The region features indeed a near-closed sea surrounded by very urbanised littorals and mountains from which numerous rivers originate. This results in a lot of interactions and feedbacks between oceanic-atmospheric-hydrological processes that play a predominant role on climate and extreme events that frequently cause heavy dam- ages and human losses in the Mediterranean ...
Resumo:
The EGU Plinius Conference on Mediterranean Storms was established in 1999 within the framework of the Interdisciplinary Working Group on Natural Hazards (IWG-NH) of the former European Geophysical Society (EGS)- since 2002,European Geosciences Union (EGU). Since its advent, the Plinius Conference series has provided a crucial interdisciplinary forum for improving our understanding of hazardous storms over the Mediterranean basin that are capable of producing strong winds, heavy rains, explosive landslides, devastating flash floods and other related extremes ...
Resumo:
The performance of a hydrologic model depends on the rainfall input data, both spatially and temporally. As the spatial distribution of rainfall exerts a great influence on both runoff volumes and peak flows, the use of a distributed hydrologic model can improve the results in the case of convective rainfall in a basin where the storm area is smaller than the basin area. The aim of this study was to perform a sensitivity analysis of the rainfall time resolution on the results of a distributed hydrologic model in a flash-flood prone basin. Within such a catchment, floods are produced by heavy rainfall events with a large convective component. A second objective of the current paper is the proposal of a methodology that improves the radar rainfall estimation at a higher spatial and temporal resolution. Composite radar data from a network of three C-band radars with 6-min temporal and 2 × 2 km2 spatial resolution were used to feed the RIBS distributed hydrological model. A modification of the Window Probability Matching Method (gauge-adjustment method) was applied to four cases of heavy rainfall to improve the observed rainfall sub-estimation by computing new Z/R relationships for both convective and stratiform reflectivities. An advection correction technique based on the cross-correlation between two consecutive images was introduced to obtain several time resolutions from 1 min to 30 min. The RIBS hydrologic model was calibrated using a probabilistic approach based on a multiobjective methodology for each time resolution. A sensitivity analysis of rainfall time resolution was conducted to find the resolution that best represents the hydrological basin behaviour.
Resumo:
From 6 to 8 November 1982 one of the most catastrophic flash-flood events was recorded in the Eastern Pyrenees affecting Andorra and also France and Spain with rainfall accumulations exceeding 400 mm in 24 h, 44 fatalities and widespread damage. This paper aims to exhaustively document this heavy precipitation event and examines mesoscale simulations performed by the French Meso-NH non-hydrostatic atmospheric model. Large-scale simulations show the slow-evolving synoptic environment favourable for the development of a deep Atlantic cyclone which induced a strong southerly flow over the Eastern Pyrenees. From the evolution of the synoptic pattern four distinct phases have been identified during the event. The mesoscale analysis presents the second and the third phase as the most intense in terms of rainfall accumulations and highlights the interaction of the moist and conditionally unstable flows with the mountains. The presence of a SW low level jet (30 m s-1) around 1500 m also had a crucial role on focusing the precipitation over the exposed south slopes of the Eastern Pyrenees. Backward trajectories based on Eulerian on-line passive tracers indicate that the orographic uplift was the main forcing mechanism which triggered and maintained the precipitating systems more than 30 h over the Pyrenees. The moisture of the feeding flow mainly came from the Atlantic Ocean (7-9 g kg-1) and the role of the Mediterranean as a local moisture source was very limited (2-3 g kg-1) due to the high initial water vapour content of the parcels and the rapid passage over the basin along the Spanish Mediterranean coast (less than 12 h).
Resumo:
This paper discusses uncertainties in model projections of summer drying in the Euro-Mediterranean region related to errors and uncertainties in the simulation of the summer NAO (SNAO). The SNAO is the leading mode of summer SLP variability in the North Atlantic/European sector and modulates precipitation not only in the vicinity of the SLP dipole (northwest Europe) but also in the Mediterranean region. An analysis of CMIP3 models is conducted to determine the extent to which models reproduce the signature of the SNAO and its impact on precipitation and to assess the role of the SNAO in the projected precipitation reductions. Most models correctly simulate the spatial pattern of the SNAO and the dry anomalies in northwest Europe that accompany the positive phase. The models also capture the concurrent wet conditions in the Mediterranean, but the amplitude of this signal is too weak, especially in the east. This error is related to the poor simulation of the upper-level circulation response to a positive SNAO, namely the observed trough over the Balkans that creates potential instability and favors precipitation. The SNAO is generally projected to trend upwards in CMIP3 models, leading to a consistent signal of precipitation reduction in NW Europe, but the intensity of the trend varies greatly across models, resulting in large uncertainties in the magnitude of the projected drying. In the Mediterranean, because the simulated influence of the SNAO is too weak, no precipitation increase occurs even in the presence of a strong SNAO trend, reducing confidence in these projections.
Resumo:
The general objective of the international MEDiterranean EXperiment (MEDEX) was the better understanding and forecasting of cyclones that produce high impact weather in the Mediterranean. This paper reviews the motivation and foundation of MEDEX, the gestation, history and organisation of the project, as well as the main products and scientific achievements obtained from it. MEDEX obtained the approval of World Meteorological Organisation (WMO) and can be considered as framed within other WMO actions, such as the ALPine EXperiment (ALPEX), the Mediterranean Cyclones Study Project (MCP) and, to a certain extent, THe Observing System Research and Predictability EXperiment (THORPEX) and the HYdrological cycle in Mediterranean EXperiment (HyMeX). Through two phases (2000 2005 and 2006 2010), MEDEX has produced a specific database, with information about cyclones and severe or high impact weather events, several main reports and a specific data targeting system field campaign (DTS-MEDEX-2009). The scientific achievements are significant in fields like climatology, dynamical understanding of the physical processes and social impact of cyclones, as well as in aspects related to the location of sensitive zones for individual cases, the climatology of sensitivity zones and the improvement of the forecasts through innovative methods like mesoscale ensemble prediction systems.
Resumo:
Using the method of Lorenz (1982), we have estimated the predictability of a recent version of the European Center for Medium-Range Weather Forecasting (ECMWF) model using two different estimates of the initial error corresponding to 6- and 24-hr forecast errors, respectively. For a 6-hr forecast error of the extratropical 500-hPa geopotential height field, a potential increase in forecast skill by more than 3 d is suggested, indicating a further increase in predictability by another 1.5 d compared to the use of a 24-hr forecast error. This is due to a smaller initial error and to an initial error reduction resulting in a smaller averaged growth rate for the whole 7-d forecast. A similar assessment for the tropics using the wind vector fields at 850 and 250 hPa suggests a huge potential improvement with a 7-d forecast providing the same skill as a 1-d forecast now. A contributing factor to the increase in the estimate of predictability is the apparent slow increase of error during the early part of the forecast.
Resumo:
Data assimilation – the set of techniques whereby information from observing systems and models is combined optimally – is rapidly becoming prominent in endeavours to exploit Earth Observation for Earth sciences, including climate prediction. This paper explains the broad principles of data assimilation, outlining different approaches (optimal interpolation, three-dimensional and four-dimensional variational methods, the Kalman Filter), together with the approximations that are often necessary to make them practicable. After pointing out a variety of benefits of data assimilation, the paper then outlines some practical applications of the exploitation of Earth Observation by data assimilation in the areas of operational oceanography, chemical weather forecasting and carbon cycle modelling. Finally, some challenges for the future are noted.
Resumo:
The Convective Storm Initiation Project (CSIP) is an international project to understand precisely where, when, and how convective clouds form and develop into showers in the mainly maritime environment of southern England. A major aim of CSIP is to compare the results of the very high resolution Met Office weather forecasting model with detailed observations of the early stages of convective clouds and to use the newly gained understanding to improve the predictions of the model. A large array of ground-based instruments plus two instrumented aircraft, from the U.K. National Centre for Atmospheric Science (NCAS) and the German Institute for Meteorology and Climate Research (IMK), Karlsruhe, were deployed in southern England, over an area centered on the meteorological radars at Chilbolton, during the summers of 2004 and 2005. In addition to a variety of ground-based remote-sensing instruments, numerous rawin-sondes were released at one- to two-hourly intervals from six closely spaced sites. The Met Office weather radar network and Meteosat satellite imagery were used to provide context for the observations made by the instruments deployed during CSIP. This article presents an overview of the CSIP field campaign and examples from CSIP of the types of convective initiation phenomena that are typical in the United Kingdom. It shows the way in which certain kinds of observational data are able to reveal these phenomena and gives an explanation of how the analyses of data from the field campaign will be used in the development of an improved very high resolution NWP model for operational use.