924 resultados para Weapons of mass destruction
Seasonal variations and sources of mass and chemical composition for PM10 aerosol in Hangzhou, China
Resumo:
In the concept of dinuclear system, the quasifission rate from Kramers formula has been incorporated in the master equation in order to study the competition between fusion and qusifission. Mass yields of quasifission products of the three reactions Ca-48 + Pu-244, Ca-48 + U-238 and Fe-58 + Th-232 have been calculated, and the experimental data are reproduced very well, which is a critical test for the existing fusion model. Also we have shown the time evolution of the mass distributions of quasifission products, which provides valuable information of the process of competition between fusion and quasifission.
Resumo:
We present the multiplicity and pseudorapidity distributions of photons produced in Au + Au and Cu + Cu collisions at root(NN)-N-s = 62.4 and 200 GeV. The photons are measured in the region -3.7 < eta < -2.3 using the photon Multiplicity detector in the STAR experiment at RHIC. The number of photons produced per average number of participating nucleon pairs increases with the beam energy and is independent of (lie collision centrality. For collisions with similar average numbers of participating nucleons the photon multiplicities are observed to be similar for An + Au and Cu + Cu collisions at a given beam energy. The ratios of the number of charged particles to photons in the measured pseudorapidity range are found to be 1.4 +/- 0.1 and 1.2 +/- 0.1 for root(NN)-N-s = 62.4 and 200 GeV, respectively. The energy dependence of this ratio could reflect varying contributions from baryons to charged particles, while mesons are the dominant contributors to photon production in the given kinematic region. The photon pseudorapidity distributions normalized by average number of participating nucleon pairs, when plotted as a function of eta-Y-beam, are found to follow a longitudinal scaling independent of centrality and colliding ion species at both beam energies. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Mass spectrometry is not able to differentiate NOx and N2 from other interferences (e.g. CO and C2H4) in the deNOx reactions. In the present study, a quantitative method for analysis of NOx and N2 simultaneously in these reactions with an assisted converter operated at higher temperature under O2-rich condition, which eliminates the interferences, is developed. The NOx conversion from this method is comparable to the one from an Automotive Emission Analyser equipped with NOx electrochemical sensor. Two types of deNOx reactions are tested in terms of selectivity of N2 production. The application of this method is discussed.
Resumo:
Ephedrine and isoephedrine were first distingshed by electrospy ionization mass spectrometry and in-sourice collision-induced dissociation technique. Based on this observation, a unkown sample was identified for ephedrine.
Resumo:
Edkins Jenny, 'The Criminalisation of Mass Starvations: From Natural Disaster to Crime Against Humanity', In: 'The New Famines: Why Famines Persist in an Era of Globalisation', (New York: Routledge), pp.50-65, 2006 RAE2008
Resumo:
New regional swath and near-bottom bathymetric data provide constraints on shallow structures at the Hess Deep Rift, an oceanic rift that exposes the crust and upper mantle of fast-spreading oceanic lithosphere created at the East Pacific Rise. These data reveal the presence of a lobate structure with a length of ~ 4 km and a width of ~ 6 km south of an Intrarift Ridge, north of Hess Deep. The lobe consists of a series of concentric benches that are widest in the center of the lobe and narrower at the edges, with a dominant bench separating two distinct morphologic regions in the lobe. There are two end-member possible interpretations of this feature: 1) the lobate structure represents a mass failure with little translation that contains coherent blocks that preserve rift-related lineaments; or 2) it represents degraded tectonic structures, and the lobate form is accounted for by, for example, two intersecting faults. We favor the slump interpretation because it more readily accounts for the lobate form of the feature and the curved benches and based on the presence of other similar lobes in this region. In the slump model, secondary structures within the benches may indicate radial spreading during or after failure. The large lobate structure we identify south of the Intrarift Ridge in Hess Deep is one of the first features of its kind identified in an oceanic rift, and illustrates that mass failure may be a significant process in these settings, consistent with the recognition of their importance in mid-ocean ridges, oceanic islands, and continental rifts. Understanding the structure of the Hess Deep Rift is also important for reconstructing the section of fast-spreading oceanic crust exposed here.
Resumo:
The selective heterogeneous catalytic reduction of phenyl acetylene to styrene over palladium supported on calcium carbonate is reported in both an ionic liquid and a molecular solvent. By using a rotating disc reactor in conjunction with results from a stirred tank reactor it is possible, for the first time, to disentangle the mass transfer contributions in the ionic liquid system. For both heptane and 1-butyl-3-methyl imidazolium bis{(trifluoromethyl)sulfonyl}imide, the reaction in the rotating disc reactor is dominated by reaction in the entrained film on the disc compared with very limited reaction in the bulk liquid. The lower reaction rate obtained in the ionic liquid compared with the organic solvent is shown to be due to the slow transport of the hydrogen dissolved in the liquid. It is clear from the results presented herein that, although the hydrodynamics of similar reactors used for biological treatment of wastewater are well understood, on using a more viscous fluid and higher rotation speeds necessary for fine chemical catalysis these simple relationships breakdown.
Resumo:
The destruction of stearic acid (SA), the SA test, is a popular approach used to evaluate the activities of photocatalytic films. The destruction of SA via semiconductor photocatalysis is monitored simultaneously, using FT-IR spectroscopy, via the disappearance of SA and the appearance of CO2, Sol-gel and P25 films of titania are used as the semiconductor photocatalytic self-cleaning films. A conversion factor is used of 9.7 x 1015 molecules of SA cm(-2) 1 Cru-1 integrated areas of the peaks in the Fr-IR of SA over the range 2700-3000 cm(-1), which is three times that reported previously by others. As the SA disappeared the concomitant amount of CO2 generated was > 90% that expected throughout the photomineralisation process for the sol-gel titania film. In contrast, the slightly more active, and scattering, P25 fitania films generated CO2 levels that dipped as low as 69% during the course of the photoreaction, but eventually recovered to congruent to 100% that expected based on the amount of SA present. The importance of these results with respect to SA test and the evaluation of new and existing self-cleaning films are discussed briefly. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Objective: The aim of this study is to examine microscopically the destruction of bacterial biofilms mediated by atmospheric pressure non-thermal plasma (APNTP) at cellular level as well as at the level of biofilm structure as a whole. Methods: 3-day old bacterial biofilms were grown on polycarbonate coupons in a dual channel flow cell and were treated with an in-housed designed atmospheric pressure non-thermal plasma jet for up to 4 minutes of exposure before being examined by both confocal laser scanning microscopy (CLSM), preceded by Live/Dead bacterial viability staining, and scanning electron microscopy (SEM). Results: Differential live/dead staining followed by confocal microscopy examination revealed that biofilm eradication by APNTP was mediated by varying levels of both cell killing and physical removal. Relative extent of each mechanism was dependent on plasma operating conditions, bacterial species, growth conditions and biofilm thickness. On the other hand, SEM examination of plasma-exposed biofilms revealed a series of morphological changes exhibited by biofilm cells ranging from increased roughness of cell surface to complete cell lysis. Conclusions: Interesting mechanistic insights have been revealed by microscopic examination of plasma-treated bacterial biofilms that, when coupled with more specific biochemical studies, will not only contribute significantly to our understanding of the mechanism of plasma mediated biofilm destruction but also will help in better application-guided development of this novel anti-biofilm approach.