987 resultados para Waves.
Resumo:
In approximation of weak heating influence of electron heating in the high-frequency surface wave field on propagation of surface wave (heating nonlinearity) is considered. It is shown that high-frequency surface wave propagates in direction perpendicular to the external magnetic field at the semiconductor-metal interface. A nonlinear dispersion equation is obtained and studied that allows to make conclusions about the contribution of heating nonlinearity to nonlinear process of considered interaction.
Resumo:
The problem concerning the excitation of high-frequency surface waves (SW) propagating across an external magnetic field at a plasma-metal interface is considered. A homogeneous electric pump field is applied in the direction transverse with respect to the plasma-metal interface. Two high-frequency SW from different frequency ranges of existence and propagating in different directions are shown to be excited in this pump field. The instability threshold pump-field values and increments are obtained for different parameters of the considered waveguide structure. The results associated with saturation of the nonlinear instability due to self-interaction effects of the excited SW are given as well. The results are appropriate for both gaseous and semiconductor plasmas.
Resumo:
The influence of electron heating in the high-frequency surface magnetoplasma wave(SM) field on dispersion properties of the considered SM is investigated. High frequency SM propagate at the interface between a plasma like medium with a finite electrons pressure and a metal. The nonlinear dispersion relation for the SM is derived and investigated.
Resumo:
The efficiency of the excitation of surface plasma waves in the presence of external, steady crossed magnetic and electric fields is studied analytically and numerically for a geometry in which the waves propagate along the interface between a plasma-like medium and a metal in the direction transverse to both fields. The magnetic and electric fields are assumed to be parallel and transverse to the interface, respectively. The condition for which the drift instability of the surface wave arises is found.
Resumo:
This paper deals with the theoretical studies of nonlinear interactions of azimuthal surface waves (ASW) in cylindrical metal waveguides fully filled by a uniform magnetoactive plasma. These surface-type wave perturbations propagate in azimuthal direction across an external magnetic field, which is directed along the waveguide axis. The ASW is a relatively new kind of surface waves and so far the nonlinear effects associated with their propagation are outside the scope of scientific issues. They are characterized by a discrete set of mode numbers values which define the ASW eigenfrequencies. This fact leads to several peculiarities of ASW compared with ordinary surface-type waves.
Resumo:
This two-part video installation, exploring the feminine gaze and the traditions of cinema, was exhibited at the Institute of Modern Art in Brisbane as part of the 2013 'Fresh Cut' program.
Resumo:
We examine IT-enabled Business Transformations (ITBT) based on three case studies of successful, multi-year ERP implementation programs. Given the inconsistencies in segmenting the different key periods in ITBTs in both literature and our cases, we sought to consolidate the common events or critical incidents in such initiatives. We label those key periods as waves, and the emergence of triggers and reactions thereunto in the management of business transformations. We show that business transformations unfold in four distinct waves: Wave 1 Concept Development, Wave 2 Blueprint Design, Wave 3 Solution Delivery and Wave 4 Post-Transformation. These waves are characterized by the occurrence of strategic- and program-level triggers to which organizations respond by invoking different management services. Our interpretive research provides a new conceptualization of ITBTs based on a service-oriented view of such initiatives. This view draws attention to managerial capabilities as a service to transformations, and how and when these capabilities are required to respond to triggering incidents. We outline propositions and recommendations for business transformation management.
Resumo:
This paper presents a discussion on the use of MIMO and SISO techniques for identification of the radiation force terms in models for surface vessels. We compare and discuss two techniques recently proposed in literature for this application: time domain identification and frequency domain identification. We compare the methods in terms of estimates model order, accuracy of the fit, use of the available information, and ease of use and implementation.
Resumo:
Linear water wave theory suggests that wave patterns caused by a steadily moving disturbance are contained within a wedge whose half-angle depends on the depth-based Froude number $F_H$. For the problem of flow past an axisymmetric pressure distribution in a finite-depth channel, we report on the apparent angle of the wake, which is the angle of maximum peaks. For moderately deep channels, the dependence of the apparent wake angle on the Froude number is very different to the wedge angle, and varies smoothly as $F_H$ passes through the critical value $F_H=1$. For shallow water, the two angles tend to follow each other more closely, which leads to very large apparent wake angles for certain regimes.
Resumo:
We demonstrate a geometrically inspired technique for computing Evans functions for the linearised operators about travelling waves. Using the examples of the F-KPP equation and a Keller–Segel model of bacterial chemotaxis, we produce an Evans function which is computable through several orders of magnitude in the spectral parameter and show how such a function can naturally be extended into the continuous spectrum. In both examples, we use this function to numerically verify the absence of eigenvalues in a large region of the right half of the spectral plane. We also include a new proof of spectral stability in the appropriate weighted space of travelling waves of speed c≥sqrt(2δ) in the F-KPP equation.
Resumo:
The problem of electromagnetic scattering from an isotropic homogeneous chirally coated conducting cylinder is analysed. The cylinder is assumed to be illuminated by either a transverse magnetic or a transverse electric wave. Mie's analysis is used to evaluate the scattering characteristics. The computed results include the evaluation of the normalized scattering width and the absorption efficiency. The results show that there is a significant reduction in the normalized scattering width as compared to a RAM coated cylinder. This reduction has been attributed to increased absorption.
Diffraction Of Elastic Waves By Two Parallel Rigid Strips Embedded In An Infinite Orthotropic Medium
Resumo:
The elastodynamic response of a pair of parallel rigid strips embedded in an infinite orthotropic medium due to elastic waves incident normally on the strips has been investigated. The mixed boundary value problem has been solved by the Integral Equation method. The normal stress and the vertical displacement have been derived in closed form. Numerical values of stress intensity factors at inner and outer edges of the strips and vertical displacement at points in the plane of the strips for several orthotropic materials have been calculated and plotted graphically to show the effect of material orthotropy.
Resumo:
Time-frequency analysis of various simulated and experimental signals due to elastic wave scattering from damage are performed using wavelet transform (WT) and Hilbert-Huang transform (HHT) and their performances are compared in context of quantifying the damages. Spectral finite element method is employed for numerical simulation of wave scattering. An analytical study is carried out to study the effects of higher-order damage parameters on the reflected wave from a damage. Based on this study, error bounds are computed for the signals in the spectral and also on the time-frequency domains. It is shown how such an error bound can provide all estimate of error in the modelling of wave propagation in structure with damage. Measures of damage based on WT and HHT is derived to quantify the damage information hidden in the signal. The aim of this study is to obtain detailed insights into the problem of (1) identifying localised damages (2) dispersion of multifrequency non-stationary signals after they interact with various types of damage and (3) quantifying the damages. Sensitivity analysis of the signal due to scattered wave based on time-frequency representation helps to correlate the variation of damage index measures with respect to the damage parameters like damage size and material degradation factors.
Resumo:
We formulate the thin-film hydrodynamics of a suspension of polar self-driven particles and show that it is prone to several instabilities through the interplay of activity, polarity, and the existence of a free surface. Our approach extends, to self-propelling systems, the work of Ben Amar and Cummings [Phys. Fluids 13 1160 (2001)] on thin-film nematics. Based on our estimates the instabilities should be seen in bacterial suspensions and the lamellipodium, and are potentially relevant to the morphology of biofilms. We suggest several experimental tests of our theory.