995 resultados para Water waves.


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A large class of scattering problems of surface water waves by vertical barriers lead to mixed boundary value problems for Laplace equation. Specific attentions are paid, in the present article, to highlight an analytical method to handle this class of problems of surface water wave scattering, when the barriers in question are non-reflecting in nature. A new set of boundary conditions is proposed for such non-reflecting barriers and tile resulting boundary value problems are handled in the linearized theory of water waves. Three basic poblems of scattering by vertical barriers are solved. The present new theory of non-reflecting vertical barriers predict new transmission coefficients and tile solutions of tile mathematical problems turn out to be extremely simple and straight forward as compared to the solution for other types of barriers handled previously.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Numerical simulation of an oil slick spreading on still and wavy surfaces is described in this paper. The so-called sigma transformation is used to transform the time-varying physical domain into a fixed calculation domain for the water wave motions and, at the same time, the continuity equation is changed into an advection equation of wave elevation. This evolution equation is discretized by the forward time and central space scheme, and the momentum equations by the projection method. A damping zone is set up in front of the outlet boundary coupled with a Sommerfeld-Orlanski condition at that boundary to minimize the wave reflection. The equations for the oil slick are depth-averaged and coupled with the water motions when solving numerically. As examples, sinusoidal and solitary water waves, the oil spread on a smooth plane and on still and wavy water surfaces are calculated to examine the accuracy of simulating water waves by Navier-Stokes equations, the effect of damping zone on wave reflection and the precise structures of oil spread on waves.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the cylindrical coordinate system, a singular perturbation theory of multiple-scale asymptotic expansions was developed to study single standing water wave mode by solving potential equations of water waves in a rigid circular cylinder, which is subjec

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The nonlinear free surface amplitude equation, which has been derived from the inviscid fluid by solving the potential equation of water waves with a singular perturbation theory in a vertically oscillating rigid circular cylinder, is investigated successively in the fourth-order Runge-Kutta approach with an equivalent time-step. Computational results include the evolution of the amplitude with time, the characteristics of phase plane determined by the real and imaginary parts of the amplitude, the single-mode selection rules of the surface waves in different forced frequencies, contours of free surface displacement and corresponding three-dimensional evolution of surface waves, etc. In addition, the comparison of the surface wave modes is made between theoretical calculations and experimental measurements, and the results are reasonable although there are some differences in the forced frequency.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Some problems of edge waves and standing waves on beaches are examined.

The nonlinear interaction of a wave normally incident on a sloping beach with a subharmonic edge wave is studied. A two-timing expansion is used in the full nonlinear theory to obtain the modulation equations which describe the evolution of the waves. It is shown how large amplitude edge waves are produced; and the results of the theory are compared with some recent laboratory experiments.

Traveling edge waves are considered in two situations. First, the full linear theory is examined to find the finite depth effect on the edge waves produced by a moving pressure disturbance. In the second situation, a Stokes' expansion is used to discuss the nonlinear effects in shallow water edge waves traveling over a bottom of arbitrary shape. The results are compared with the ones of the full theory for a uniformly sloping bottom.

The finite amplitude effects for waves incident on a sloping beach, with perfect reflection, are considered. A Stokes' expansion is used in the full nonlinear theory to find the corrections to the dispersion relation for the cases of normal and oblique incidence.

Finally, an abstract formulation of the linear water waves problem is given in terms of a self adjoint but nonlocal operator. The appropriate spectral representations are developed for two particular cases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A model equation for water waves has been suggested by Whitham to study, qualitatively at least, the different kinds of breaking. This is an integro-differential equation which combines a typical nonlinear convection term with an integral for the dispersive effects and is of independent mathematical interest. For an approximate kernel of the form e^(-b|x|) it is shown first that solitary waves have a maximum height with sharp crests and secondly that waves which are sufficiently asymmetric break into "bores." The second part applies to a wide class of bounded kernels, but the kernel giving the correct dispersion effects of water waves has a square root singularity and the present argument does not go through. Nevertheless the possibility of the two kinds of breaking in such integro-differential equations is demonstrated.

Difficulties arise in finding variational principles for continuum mechanics problems in the Eulerian (field) description. The reason is found to be that continuum equations in the original field variables lack a mathematical "self-adjointness" property which is necessary for Euler equations. This is a feature of the Eulerian description and occurs in non-dissipative problems which have variational principles for their Lagrangian description. To overcome this difficulty a "potential representation" approach is used which consists of transforming to new (Eulerian) variables whose equations are self-adjoint. The transformations to the velocity potential or stream function in fluids or the scaler and vector potentials in electromagnetism often lead to variational principles in this way. As yet no general procedure is available for finding suitable transformations. Existing variational principles for the inviscid fluid equations in the Eulerian description are reviewed and some ideas on the form of the appropriate transformations and Lagrangians for fluid problems are obtained. These ideas are developed in a series of examples which include finding variational principles for Rossby waves and for the internal waves of a stratified fluid.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The general theory of Whitham for slowly-varying non-linear wavetrains is extended to the case where some of the defining partial differential equations cannot be put into conservation form. Typical examples are considered in plasma dynamics and water waves in which the lack of a conservation form is due to dissipation; an additional non-conservative element, the presence of an external force, is treated for the plasma dynamics example. Certain numerical solutions of the water waves problem (the Korteweg-de Vries equation with dissipation) are considered and compared with perturbation expansions about the linearized solution; it is found that the first correction term in the perturbation expansion is an excellent qualitative indicator of the deviation of the dissipative decay rate from linearity.

A method for deriving necessary and sufficient conditions for the existence of a general uniform wavetrain solution is presented and illustrated in the plasma dynamics problem. Peaking of the plasma wave is demonstrated, and it is shown that the necessary and sufficient existence conditions are essentially equivalent to the statement that no wave may have an amplitude larger than the peaked wave.

A new type of fully non-linear stability criterion is developed for the plasma uniform wavetrain. It is shown explicitly that this wavetrain is stable in the near-linear limit. The nature of this new type of stability is discussed.

Steady shock solutions are also considered. By a quite general method, it is demonstrated that the plasma equations studied here have no steady shock solutions whatsoever. A special type of steady shock is proposed, in which a uniform wavetrain joins across a jump discontinuity to a constant state. Such shocks may indeed exist for the Korteweg-de Vries equation, but are barred from the plasma problem because entropy would decrease across the shock front.

Finally, a way of including the Landau damping mechanism in the plasma equations is given. It involves putting in a dissipation term of convolution integral form, and parallels a similar approach of Whitham in water wave theory. An important application of this would be towards resolving long-standing difficulties about the "collisionless" shock.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper is the third part of a report on systematic measurements and analyses of wind-generated water waves in a laboratory environment. The results of the measurements of the turbulent flow on the water side are presented here, the details of which include the turbulence structure, the correlation functions, and the length and velocity scales. It shows that the mean turbulent velocity profiles are logarithmic, and the flows are hydraulically rough. The friction velocity in the water boundary layer is an order of magnitude smaller than that in the wind boundary layer. The level of turbulence is enhanced immediately beneath the water surface due to micro-breaking, which reflects that the Reynolds shear stress is of the order u *w 2. The vertical velocities of the turbulence are related to the relevant velocity scale at the still-water level. The autocorrelation function in the vertical direction shows features of typical anisotropic turbulence comprising a large range of wavelengths. The ratio between the microscale and macroscale can be expressed as λ/Λ=a Re Λ n, with the exponent n slightly different from -1/2, which is the value when turbulence production and dissipation are in balance. On the basis of the wavelength and turbulent velocity, the free-surface flows in the present experiments fall into the wavy free-surface flow regime. The integral turbulent scale on the water side alone underestimates the degree of disturbance at the free surface. © 2012 Elsevier B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The two-dimensional problems concerning the interaction of linear water waves with cylinders of arbitrary shape in two-layer deep water are investigated by use of the Boundary Integral Equation method (BIEM). Simpler new expressions for the Green functions are derived, and verified by comparison of results obtained by BIEM with these by an analytical method. Examined are the radiation and scattering of linear waves by two typical configurations of cylinders in two-layer deep water. Hydrodynamic behaviors including hydrodynamic coefficients, wave forces, reflection and transmission coefficients and energies are analyzed in detail, and some interesting physical phenomena are observed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The available experimental results have shown that in time-periodic motion the rheology of fluid mud displays complex viscoelastic behaviour. Based on the measured rheology of fluid mud from two field sites, we study the interaction of water waves and fluid mud by a two-layered model in which the water above is assumed to be inviscid and the mud below is viscoelastic. As the fluid-mud layer in shallow seas is usually much thinner than the water layer above, the sharp contrast of scales enables an approximate analytical theory for the interaction between fluid mud and small-amplitude waves with a narrow frequency band. It is shown that at the leading order and within a short distance of a few wavelengths, wave pressure from above forces mud motion below. Over a Much longer distance, waves are modified by the accumulative dissipation in mud. At the next order, infragravity waves owing to convective inertia (or radiation stresses) are affected indirectly by mud motion through the slow modulation of the short waves. Quantitative predictions are made for mud samples of several concentrations and from two different field sites.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, long interfacial waves of finite amplitude in uniform basic flows are considered with the assumption that the aspect ratio between wavelength and water depth is small. A new model is derived using the velocities at arbitrary distances from the still water level as the velocity variables instead of the commonly used depth-averaged velocities. This significantly improves the dispersion properties and makes them applicable to a wider range of water depths. Since its derivation requires no assumption on wave amplitude, the model thus can be used to describe waves with arbitrary amplitude.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A vertical 2-D numerical model is presented for simulating the interaction between water waves and a soft mud bed. Taking into account nonlinear rheology, a semi-empirical rheological model is applied to this water-mud model, reflecting the combined visco-elasto-plastic properties of soft mud under such oscillatory external forces as water waves. In order to increase the resolution of the flow in the neighborhood of both sides of the inter-surface, a logarithmic grid in the vertical direction is employed for numerical treatment. Model verifications are given through comparisons between the calculated and the measured mud mass transport velocities as well as wave height changes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Wave breaking in the open ocean and coastal zones remains an intriguing yet incompletely understood process, with a strong observed association with wave groups. Recent numerical study of the evolution of fully nonlinear, two-dimensional deep water wave groups identified a robust threshold of a diagnostic growth-rate parameter that separated nonlinear wave groups that evolved to breaking from those that evolved with recurrence. This paper investigates whether these deep water wave-breaking results apply more generally, particularly in finite-water-depth conditions. For unforced nonlinear wave groups in intermediate water depths over a flat bottom, it was found that the upper bound of the diagnostic growth-rate threshold parameter established for deep water wave groups is also applicable in intermediate water depths, given by k(0) h greater than or equal to 2, where k(0) is the mean carrier wavenumber and h is the mean depth. For breaking onset over an idealized circular arc sandbar located on an otherwise flat, intermediate-depth (k(0) h greater than or equal to 2) environment, the deep water breaking diagnostic growth rate was found to be applicable provided that the height of the sandbar is less than one-quarter of the ambient mean water depth. Thus, for this range of intermediate-depth conditions, these two classes of bottom topography modify only marginally the diagnostic growth rate found for deep water waves. However, when intermediate-depth wave groups ( k(0) h greater than or equal to 2) shoal over a sandbar whose height exceeds one-half of the ambient water depth, the waves can steepen significantly without breaking. In such cases, the breaking threshold level and the maximum of the diagnostic growth rate increase systematically with the height of the sandbar. Also, the dimensions and position of the sandbar influenced the evolution and breaking threshold of wave groups. For sufficiently high sandbars, the effects of bottom topography can induce additional nonlinearity into the wave field geometry and associated dynamics that modifies the otherwise robust deep water breaking-threshold results.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Based on the variation principle, the nonlinear evolution model for the shallow water waves is established. The research shows the Duffing equation can be introduced to the evolution model of water wave with time.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Waves generated by vertical seafloor movements are simulated by use of a fully nonlinear two-dimensional numerical wave tank. In the source region, the seafloor lifts to a designated height by a generation function. The numerical tests show that file linear theory is only valid for estimating the wave behaviors induced by the seafloor movements with a small amplitude, and the fully nonlinear numerical model should be adopted in the simulation of the wave generation by the large amplitude seafloor movements. Without the background surface waves, many numerical tests on the stable maximum elevations eta(max)(0) are carried out by both the linear theory and the fully nonlinear model. The results of two models are compared and analyzed. For the fully nonlinear model, the influences of the amplitudes and the horizontal lengths on eta(max)(0) are stronger than that of the characteristic duration times. Furthermore, results reveal that there are significant differences between the linear theory and the fully nonlinear model. When the influences of the background surface waves are considered, the corresponding numerical analyses reveal that with the fully nonlinear model the eta(max)(0) near-linearly varies with the wave amplitudes of the surface waves, and the eta(max)(0) has significant dependences on the wave lengths and the wave phases of the surface waves. In addition, the differences between the linear theory and the fully nonlinear model are still obvious, aid these differences are significantly affected by The wave parameters of the background surface waves, such as the wave amplitude, the wave length and the wave phase.