968 resultados para WHEAT SEEDLINGS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil salinity is a major abiotic stress influencing plant productivity worldwide. Schinopsis quebracho colorado is one of the most important woody species in the Gran Chaco, an and and salt-prone subtropical biome of South America. To gain a better understanding of the physiological mechanisms that allow plant establishment under salt conditions, germination and seedling growth of S. quebracho colorado were examined under treatment with a range of NaCl solutions (germination: 0-300 mmol l(-1) NaCl; seedling growth: 0-200 mmol l(-1) NaCl). The aim was to test the hypothesis that S. quebracho colorado is a glycophite that shows different salt tolerance responses with development stage. Proline content, total soluble carbohydrates and Na+, K+ and Cl- concentrations in leaves and roots of seedlings, and the chlorophyll concentration and relative water content of leaves were measured. Germination was not affected by 100 mmol l(-1) NaCl, but decreased at a concentration of 200 mmol l(-1). At 300 mmol l(-1) NaCl, germination did not occur. Seedling growth decreased drastically with increasing salinity. An increase in NaCl from 0 to 100 mmol l(-1) also significantly reduced the leaf relative water content by 22% and increased the proline concentration by 60% in roots. In contrast, total soluble carbohydrates were not significantly affected by salinity. Seedlings showed a sodium exclusion capacity, and there was an inverse correlation between Cl- concentration and the total chlorophyll concentration. S. quebracho colorado was more tolerant to salinity during germination than in the seedling phase. The results suggest that this increased tolerance during germination might, in part, be the result of lower sensitivity to high tissue Na+ concentrations. The significant increment of proline in the roots suggests the positive role of this amino acid as a compatible solute in balancing the accumulation of Na+ and Cl- as a result of salinity. These results help clarify the physiological mechanisms that allow establishment of S. quebracho colorado on salt-affected soils in arid and semi-arid Gran Chaco. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The value of a seasonal forecasting system based on phases of the Southern Oscillation was estimated for a representative dryland wheat grower in the vicinity of Goondiwindi. In particular the effects on this estimate of risk attitude and planting conditions were examined. A recursive stochastic programming approach was used to identify the grower's utility-maximising action set in the event of each of the climate patterns over the period 1894-1991 recurring In the imminent season. The approach was repeated with and without use of the forecasts. The choices examined were, at planting, nitrogen application rate and cultivar and, later in the season, choices of proceeding with or abandoning each wheat activity, The value of the forecasting system was estimated as the maximum amount the grower could afford to pay for its use without expected utility being lowered relative to its non use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential for hedging Australian wheat with the new Sydney Futures Exchange wheat contract is examined using a theoretical hedging model parametised from previous studies. The optimal hedging ratio for an 'average' wheat farmer was found to be zero under reasonable assumptions about transaction costs and based on previously published measures of risk aversion. The estimated optimal hedging ratios were found by simulation to be quite sensitive to assumptions about the degree of risk aversion. If farmers are significantly more risk averse than is currently believed, then there is likely to be an active interest in the new futures market.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systems approaches can help to evaluate and improve the agronomic and economic viability of nitrogen application in the frequently water-limited environments. This requires a sound understanding of crop physiological processes and well tested simulation models. Thus, this experiment on spring wheat aimed to better quantify water x nitrogen effects on wheat by deriving some key crop physiological parameters that have proven useful in simulating crop growth. For spring wheat grown in Northern Australia under four levels of nitrogen (0 to 360 kg N ha(-1)) and either entirely on stored soil moisture or under full irrigation, kernel yields ranged from 343 to 719 g m(-2). Yield increases were strongly associated with increases in kernel number (9150-19950 kernels m(-2)), indicating the sensitivity of this parameter to water and N availability. Total water extraction under a rain shelter was 240 mm with a maximum extraction depth of 1.5 m. A substantial amount of mineral nitrogen available deep in the profile (below 0.9 m) was taken up by the crop. This was the source of nitrogen uptake observed after anthesis. Under dry conditions this late uptake accounted for approximately 50% of total nitrogen uptake and resulted in high (>2%) kernel nitrogen percentages even when no nitrogen was applied,Anthesis LAI values under sub-optimal water supply were reduced by 63% and under sub-optimal nitrogen supply by 50%. Radiation use efficiency (RUE) based on total incident short-wave radiation was 1.34 g MJ(-1) and did not differ among treatments. The conservative nature of RUE was the result of the crop reducing leaf area rather than leaf nitrogen content (which would have affected photosynthetic activity) under these moderate levels of nitrogen limitation. The transpiration efficiency coefficient was also conservative and averaged 4.7 Pa in the dry treatments. Kernel nitrogen percentage varied from 2.08 to 2.42%. The study provides a data set and a basis to consider ways to improve simulation capabilities of water and nitrogen effects on spring wheat. (C) 1997 Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnitude of genotype-by-management (G x M) interactions for grain yield and grain protein concentration was examined in a multi-environment trial (MET) involving a diverse set of 272 advanced breeding lines from the Queensland wheat breeding program. The MET was structured as a series of management-regimes imposed at 3 sites for 2 years. The management-regimes were generated at each site-year as separate trials in which planting time, N fertiliser application rate, cropping history, and irrigation were manipulated. irrigation was used to simulate different rainfall regimes. From the combined analysis of variance, the G x M interaction variance components were found to be the largest source of G x E interaction variation for both grain yield (0.117 +/- 0.005 t(2) ha(-2); 49% of total G x E 0.238 +/- 0.028 t(2) ha(-2)) and grain protein concentration (0.445 +/- 0.020%(2); 82% of total G x E 0.546 +/- 0.057%(2)), and in both cases this source of variation was larger than the genotypic variance component (grain yield 0.068 +/- 0.014 t(2) ha(-2) and grain protein 0.203 +/- 0.026%(2)). The genotypic correlation between the traits varied considerably with management-regime, ranging from -0.98 to -0.31, with an estimate of 0.0 for one trial. Pattern analysis identified advanced breeding lines with improved grain yield and grain protein concentration relative to the cultivars Hartog, Sunco and Meteor. It is likely that a large component of the previously documented G x E interactions for grain yield of wheat in the northern grains region are in part a result of G x M interactions. The implications of the strong influence of G x M interactions for the conduct of wheat breeding METs in the northern region are discussed. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Participatory plant breeding (PPB) has been suggested as an effective alternative to formal plant breeding (FPB) as a breeding strategy for achieving productivity gains under low input conditions. With genetic progress through PPB and FPB being determined by the same genetic variables, the likelihood of success of PPB approaches applied in low input target conditions was analyzed using two case studies from FPB that have resulted in significant productivity gains under low input conditions: (1) breeding tropical maize for low input conditions by CIMMYT, and (2) breeding of spring wheat for the highly variable low input rainfed farming systems in Australia. In both cases, genetic improvement was an outcome of long-term investment in a sustained research effort aimed at understanding the detail of the important environmental constraints to productivity and the plant requirements for improved adaptation to the identified constraints, followed up by the design and continued evaluation of efficient breeding strategies. The breeding strategies used differed between the two case studies but were consistent in their attention to the key determinants of response to selection: (1) ensuring adequate sources of genetic variation and high selection pressures for the important traits at all stages of the breeding program, (2) use of experimental procedures to achieve high levels of heritability in the breeding trials, and (3) testing strategies that achieved a high genetic correlation between performance of germplasm in the breeding trials and under on-farm conditions. The implications of the outcomes from these FPB case studies for realizing the positive motivations for adopting PPB strategies are discussed with particular reference for low input target environment conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The material in genebanks includes valuable traditional varieties and landraces, non-domesticated species, advanced and obsolete cultivars, breeding lines and genetic stock. It is the wide variety of potentially useful genetic diversity that makes collections valuable. While most of the yield increases to date have resulted from manipulation of a few major traits (such as height, photoperiodism, and vernalization), meeting future demand for increased yields will require exploitation of novel genetic resources. Many traits have been reported to have potential to enhance yield, and high expression of these can be found in germplasm collections. To boost yield in irrigated situations, spike fertility must be improved simultaneously with photosynthetic capacity. CIMMYT's Wheat Genetic Resources program has identified a source of multi-ovary florets, with up to 6 kernels per floret. Lines from landrace collections have been identified that have very high chlorophyll concentration, which may increase leaf photosynthetic rate. High chlorophyll concentration and high stomatal conductance are associated with heat tolerance. Recent studies, through augmented use of seed multiplication nurseries, identified high expression of these traits in bank accessions, and both traits were heritable. Searches are underway for drought tolerance traits related to remobilization of stem fructans, awn photosynthesis, osmotic adjustment, and pubescence. Genetic diversity from wild relatives through the production of synthetic wheats has produced novel genetic diversity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of shoot water status in mediating the decline in leaf elongation rate of nitrogen (N)-deprived barley plants was assessed. Plants were grown at two levels of N supply, with or without the application of pneumatic pressure to the roots. Applying enough pressure (balancing pressure) to keep xylem sap continuously bleeding from the cut surface of a leaf allowed the plants to remain at full turgor throughout the experiments. Plants from which N was withheld required a greater balancing pressure during both day and night. This difference in balancing pressure was greater at high (2.0 kPa) than low (1.2 kPa) atmospheric vapour pressure deficit (VPD). Pressurizing the roots did not prevent the decline in leaf elongation rate induced by withholding N at either high or low VPD. Thus low shoot water status did not limit leaf growth of N-deprived plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A field experiment was conducted to study the effect of micronutrients, zinc (Zn), copper (Cu), iron (Fe), manganese (Mn), boron (13) and a commercial fritted micronutrient product called Zarzameen, on the yield and the yield components of wheat (Triticum aestivum L.), in the Peshawar valley, Pakistan. Different combinations of Zn, Cu. Fe. Mn, B, and Zarzameen were applied at the rate of 4.0, 2.0, 5.0, 2.0, 1.0 kg ha(-1) and 1.0 kg ha(-1), respectively, along with a basal dose of 100 kg ha(-1) nitrogen(N), 75 kg ha(-1) phosphorus (P) and 50 kg ha(-1) potassium (K). The fertilizer treatments (macro- and micronutrients) increased wheat dry matter, grain yield, and straw yield significantly over an unfertilized control. Soil tests for B and Zn were increased both at boot and harvesting stage, and Fe at boot stage, with the addition of micronutrients. Plants without B had showed classical B deficiency symptoms at grain formation stage, but not at vegetative stage. Boron concentration in the dry matter of wheat plants increased with the addition of the B fertilizer in the soil. Boron deficiency was not observed in plants containing >4 mg B kg(-1) at the boot stage, or in soils containing > 1.4 mg kg(-1) hot water soluble B.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatial and temporal variability in wheat production in Australia is dominated by rainfall occurrence. The length of historical production records is inadequate, however, to analyse spatial and temporal patterns conclusively. In this study we used modelling and simulation to identify key spatial patterns in Australian wheat yield, identify groups of years in the historical record in which spatial patterns were similar, and examine association of those wheat yield year groups with indicators of the El Nino Southern Oscillation (ENSO). A simple stress index model was trained on 19 years of Australian Bureau of Statistics shire yield data (1975-93). The model was then used to simulate shire yield from 1901 to 1999 for all wheat-producing shires. Principal components analysis was used to determine the dominating spatial relationships in wheat yield among shires. Six major components of spatial variability were found. Five of these represented near spatially independent zones across the Australian wheatbelt that demonstrated coherent temporal (annual) variability in wheat yield. A second orthogonal component was required to explain the temporal variation in New South Wales. The principal component scores were used to identify high- and low-yielding years in each zone. Year type groupings identified in this way were tested for association with indicators of ENSO. Significant associations were found for all zones in the Australian wheatbelt. Associations were as strong or stronger when ENSO indicators preceding the wheat season (April-May phases of the Southern Oscillation Index) were used rather than indicators based on classification during the wheat season. Although this association suggests an obvious role for seasonal climate forecasting in national wheat crop forecasting, the discriminatory power of the ENSO indicators, although significant, was not strong. By examining the historical years forming the wheat yield analog sets within each zone, it may be possible to identify novel climate system or ocean-atmosphere features that may be causal and, hence, most useful in improving seasonal forecasting schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rapid and reliable polymerase chain reaction (PCR)-based protocol was developed for detecting zygosity of the 1BL/1RS translocation in hexaploid wheat. The protocol involved a multiplex PCR with 2 pairs of oligonucleotide primers, rye-specific Ris-1 primers, and consensus 5S intergenic spacer (IGS) primers, and digestion of the PCR products with the restriction enzyme, MseI. A small piece of alkali-treated intact leaf tissue is used as a template for the PCR, thereby eliminating the necessity for DNA extraction. The test is simple, highly sensitive, and rapid compared with the other detection systems of 1BS1RS heterozygotes in hexaploid wheat. PCR results were confirmed with AFLP analyses. Diagnostic tests for 1BL/1RS translocation based on Sec-1-specific ELISA, screening for chromosome arm 1RS controlled rust resistance locus Yr9, and the PCR test differed in their ability to detect heterozygotes. The PCR test and rust test detected more heterozygotes than the ELISA test. The PCR test is being used to facilitate S1 family recurrent selection in the Germplasm Enhancement Program of the Australian Northern Wheat Improvement Program. A combination of the PCR zygosity test with other markers currently being implemented in the breeding program makes this test economical for 1BL/1RS characterisation of S1 families.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of soil water availability on seedling growth, dry matter production and allocation were determined for Gympie ( humid coastal) and Hungry Hills ( dry inland) provenances of Eucalyptus cloeziana F. Muell. and for E. argophloia Blakely ( dry inland) species. Seven-month-old seedlings were subjected to well-watered (100% field capacity, FC), moderate (70% FC) and severe (50% FC) soil water regimes in a glasshouse environment for 14 wk. There were significant differences in seedling growth, biomass production and allocation patterns between species. E. argophloia produced twice as much biomass at 100% FC, and more than three times as much at 70% and 50% FC than did either E. cloeziana provenance. Although the humid provenance of E. cloeziana had a greater leaf area at 100% FC conditions than did the dry provenance, total biomass production did not differ significantly. Both E. cloeziana provenances were highly sensitive to water deficits. E. argophloia allocated 10% more biomass to roots than did E. cloeziana. Allometric analyses indicated that relative biomass allocation patterns were significantly affected by genotype but not by soil water availability. These results have implications for taxon selection for cultivation in humid and subhumid regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the co-ordination of promotive root-sourced cytokinin (CK) and inhibitory shoot apex-sourced auxin (IAA) is central to all current models on lateral bud dormancy release, control by those hormones alone has appeared inadequate in many studies. Thus it was hypothesized that the IAA : CK model is the central control but that it must be considered within the relevant timeframe leading to lateral bud release and against a backdrop of interactions with other hormone groups. Therefore, IAA and a wide survey of cytokinins (CKs), were examined along with abscisic acid (ABA) and polyamines (PAs) in released buds, tissue surrounding buds and xylem sap at 1 and 4 h after apex removal, when lateral buds of chickpea are known to break dormancy. Three potential lateral bud growth inhibitors, IAA, ABA and cis-zeatin 9-riboside (ZR), declined sharply in the released buds and xylem following decapitation. This is in contrast to potential dormancy breaking CKs like trans-ZR and trans-zeantin 9-riboside 5'phosphate (ZRMP), which represented the strongest correlative changes by increasing 3.5-fold in xylem sap and 22-fold in buds. PAs had not changed significantly in buds or other tissues after 4 h, so they were not directly involved in the breaking of bud dormancy. Results from the xylem and surrounding tissues indicated that bud CK increases resulted from a combination synthesis in the bud and selective loading of CK nucleotides into the xylem from the root.