942 resultados para WAVELET ANALYSIS
Resumo:
The soil microflora is very heterogeneous in its spatial distribution. The origins of this heterogeneity and its significance for soil function are not well understood. A problem for understanding spatial variation better is the assumption of statistical stationarity that is made in most of the statistical methods used to assess it. These assumptions are made explicit in geostatistical methods that have been increasingly used by soil biologists in recent years. Geostatistical methods are powerful, particularly for local prediction, but they require the assumption that the variability of a property of interest is spatially uniform, which is not always plausible given what is known about the complexity of the soil microflora and the soil environment. We have used the wavelet transform, a relatively new innovation in mathematical analysis, to investigate the spatial variation of abundance of Azotobacter in the soil of a typical agricultural landscape. The wavelet transform entails no assumptions of stationarity and is well suited to the analysis of variables that show intermittent or transient features at different spatial scales. In this study, we computed cross-variograms of Azotobacter abundance with the pH, water content and loss on ignition of the soil. These revealed scale-dependent covariation in all cases. The wavelet transform also showed that the correlation of Azotobacter abundance with all three soil properties depended on spatial scale, the correlation generally increased with spatial scale and was only significantly different from zero at some scales. However, the wavelet analysis also allowed us to show how the correlation changed across the landscape. For example, at one scale Azotobacter abundance was strongly correlated with pH in part of the transect, and not with soil water content, but this was reversed elsewhere on the transect. The results show how scale-dependent variation of potentially limiting environmental factors can induce a complex spatial pattern of abundance in a soil organism. The geostatistical methods that we used here make assumptions that are not consistent with the spatial changes in the covariation of these properties that our wavelet analysis has shown. This suggests that the wavelet transform is a powerful tool for future investigation of the spatial structure and function of soil biota. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We have applied time series analytical techniques to the flux of lava from an extrusive eruption. Tilt data acting as a proxy for flux are used in a case study of the May–August 1997 period of the eruption at Soufrière Hills Volcano, Montserrat. We justify the use of such a proxy by simple calibratory arguments. Three techniques of time series analysis are employed: spectral, spectrogram and wavelet methods. In addition to the well-known ~9-hour periodicity shown by these data, a previously unknown periodic flux variability is revealed by the wavelet analysis as a 3-day cycle of frequency modulation during June–July 1997, though the physical mechanism responsible is not clear. Such time series analysis has potential for other lava flux proxies at other types of volcanoes.
Resumo:
The ionospheric effect is one of the major errors in GPS data processing over long baselines. As a dispersive medium, it is possible to compute its influence on the GPS signal with the ionosphere-free linear combination of L1 and L2 observables, requiring dual-frequency receivers. In the case of single-frequency receivers, ionospheric effects are either neglected or reduced by using a model. In this paper, an alternative for single-frequency users is proposed. It involves multiresolution analysis (MRA) using a wavelet analysis of the double-difference observations to remove the short- and medium-scale ionosphere variations and disturbances, as well as some minor tropospheric effects. Experiments were carried out over three baseline lengths from 50 to 450 km, and the results provided by the proposed method were better than those from dual-frequency receivers. The horizontal root mean square was of about 0.28 m (1 sigma).
Resumo:
Nowadays the method based on demodulation by envelope finds wide application in industry as a technique for evaluation of bearings and other components in rotating machinery. In recent years the application of Wavelets for fault diagnosis in machinery has also obtained good development. This article demonstrates the effectiveness of the combined application of Wavelets and envelope technique (also known as HFRT High-Frequency Resonance Technique) to remove background noise from signals collected from defect bearings and identification of the characteristic frequencies of defects. A comparison of the results obtained with the isolated application of only one method against the combined technique is performed showing the increased capacity in detection of faults in rolling bearings. © (2013) Trans Tech Publications, Switzerland.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Pós-graduação em Física - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
During the last few years, several methods have been proposed in order to study and to evaluate characteristic properties of the human skin by using non-invasive approaches. Mostly, these methods cover aspects related to either dermatology, to analyze skin physiology and to evaluate the effectiveness of medical treatments in skin diseases, or dermocosmetics and cosmetic science to evaluate, for example, the effectiveness of anti-aging treatments. To these purposes a routine approach must be followed. Although very accurate and high resolution measurements can be achieved by using conventional methods, such as optical or mechanical profilometry for example, their use is quite limited primarily to the high cost of the instrumentation required, which in turn is usually cumbersome, highlighting some of the limitations for a routine based analysis. This thesis aims to investigate the feasibility of a noninvasive skin characterization system based on the analysis of capacitive images of the skin surface. The system relies on a CMOS portable capacitive device which gives 50 micron/pixel resolution capacitance map of the skin micro-relief. In order to extract characteristic features of the skin topography, image analysis techniques, such as watershed segmentation and wavelet analysis, have been used to detect the main structures of interest: wrinkles and plateau of the typical micro-relief pattern. In order to validate the method, the features extracted from a dataset of skin capacitive images acquired during dermatological examinations of a healthy group of volunteers have been compared with the age of the subjects involved, showing good correlation with the skin ageing effect. Detailed analysis of the output of the capacitive sensor compared with optical profilometry of silicone replica of the same skin area has revealed potentiality and some limitations of this technology. Also, applications to follow-up studies, as needed to objectively evaluate the effectiveness of treatments in a routine manner, are discussed.
Resumo:
Utilizing remote sensing methods to assess landscape-scale ecological change are rapidly becoming a dominant force in the natural sciences. Powerful and robust non-parametric statistical methods are also actively being developed to compliment the unique characteristics of remotely sensed data. The focus of this research is to utilize these powerful, robust remote sensing and statistical approaches to shed light on woody plant encroachment into native grasslands--a troubling ecological phenomenon occurring throughout the world. Specifically, this research investigates western juniper encroachment within the sage-steppe ecosystem of the western USA. Western juniper trees are native to the intermountain west and are ecologically important by means of providing structural diversity and habitat for many species. However, after nearly 150 years of post-European settlement changes to this threatened ecosystem, natural ecological processes such as fire regimes no longer limit the range of western juniper to rocky refugia and other areas protected from short fire return intervals that are historically common to the region. Consequently, sage-steppe communities with high juniper densities exhibit negative impacts, such as reduced structural diversity, degraded wildlife habitat and ultimately the loss of biodiversity. Much of today's sage-steppe ecosystem is transitioning to juniper woodlands. Additionally, the majority of western juniper woodlands have not reached their full potential in both range and density. The first section of this research investigates the biophysical drivers responsible for juniper expansion patterns observed in the sage-steppe ecosystem. The second section is a comprehensive accuracy assessment of classification methods used to identify juniper tree cover from multispectral 1 m spatial resolution aerial imagery.
Resumo:
Objective: To examine the relationship between the auditory brain-stem response (ABR) and its reconstructed waveforms following discrete wavelet transformation (DWT), and to comment on the resulting implications for ABR DWT time-frequency analysis. Methods: ABR waveforms were recorded from 120 normal hearing subjects at 90, 70, 50, 30, 10 and 0 dBnHL, decomposed using a 6 level discrete wavelet transformation (DWT), and reconstructed at individual wavelet scales (frequency ranges) A6, D6, D5 and D4. These waveforms were then compared for general correlations, and for patterns of change due to stimulus level, and subject age, gender and test ear. Results: The reconstructed ABR DWT waveforms showed 3 primary components: a large-amplitude waveform in the low-frequency A6 scale (0-266.6 Hz) with its single peak corresponding in latency with ABR waves III and V; a mid-amplitude waveform in the mid-frequency D6 scale (266.6-533.3 Hz) with its first 5 waves corresponding in latency to ABR waves 1, 111, V, VI and VII; and a small-amplitude, multiple-peaked waveform in the high-frequency D5 scale (533.3-1066.6 Hz) with its first 7 waves corresponding in latency to ABR waves 1, 11, 111, IV, V, VI and VII. Comparisons between ABR waves 1, 111 and V and their corresponding reconstructed ABR DWT waves showed strong correlations and similar, reliable, and statistically robust changes due to stimulus level and subject age, gender and test ear groupings. Limiting these findings, however, was the unexplained absence of a small number (2%, or 117/6720) of reconstructed ABR DWT waves, despite their corresponding ABR waves being present. Conclusions: Reconstructed ABR DWT waveforms can be used as valid time-frequency representations of the normal ABR, but with some limitations. In particular, the unexplained absence of a small number of reconstructed ABR DWT waves in some subjects, probably resulting from 'shift invariance' inherent to the DWT process, needs to be addressed. Significance: This is the first report of the relationship between the ABR and its reconstructed ABR DWT waveforms in a large normative sample. (C) 2004 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Resumo:
Dizziness and or unsteadiness, associated with episodes of loss of balance, are frequent complaints in those suffering from persistent problems following a whiplash injury. Research has been inconclusive with respect to possible aetiology, discriminative tests and analyses used. The aim of this pilot research was to identify the test conditions and the most appropriate method for the analysis of sway that may differentiate subjects with persistent whiplash associated disorders (WAD) from healthy controls. The six conditions of the Clinical Test for Sensory Interaction in Balance was performed in both comfortable and tandem stance in 20 subjects with persistent WAD compared to 20 control subjects. The analyses were carried out using a traditional method of measurement, total sway distance, to results obtained from the use of wavelet analysis. Subjects with WAD were significantly less able to complete the tandem stance tests on a firm surface than controls. In comfortable stance, using wavelet analysis, significant differences between subjects with WAD and the control group were evident in total energy of the trace for all test conditions apart from eyes open on the firm surface. In contrast, the results of the analysis using total sway distance revealed no significant differences between groups across all six conditions. Wavelet analysis may be more appropriate for detecting disturbances in balance in whiplash subjects because the technique allows separation of the noise from the underlying systematic effect of sway. These findings will be used to direct future studies on the aeitiology of balance disturbances in WAD. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
In deregulated electricity market, modeling and forecasting the spot price present a number of challenges. By applying wavelet and support vector machine techniques, a new time series model for short term electricity price forecasting has been developed in this paper. The model employs both historical price and other important information, such as load capacity and weather (temperature), to forecast the price of one or more time steps ahead. The developed model has been evaluated with the actual data from Australian National Electricity Market. The simulation results demonstrated that the forecast model is capable of forecasting the electricity price with a reasonable forecasting accuracy.
Resumo:
An approach to building a CBIR-system for searching computer tomography images using the methods of wavelet-analysis is presented in this work. The index vectors are constructed on the basis of the local features of the image and on their positions. The purpose of the proposed system is to extract visually similar data from the individual personal records and from analogous analysis of other patients.
Resumo:
Analogous to sunspots and solar photospheric faculae, which visibility is modulated by stellar rotation, stellar active regions consist of cool spots and bright faculae caused by the magnetic field of the star. Such starspots are now well established as major tracers used to estimate the stellar rotation period, but their dynamic behavior may also be used to analyze other relevant phenomena such as the presence of magnetic activity and its cycles. To calculate the stellar rotation period, identify the presence of active regions and investigate if the star exhibits or not differential rotation, we apply two methods: a wavelet analysis and a spot model. The wavelet procedure is also applied here to study pulsation in order to identify specific signatures of this particular stellar variability for different types of pulsating variable stars. The wavelet transform has been used as a powerful tool for treating several problems in astrophysics. In this work, we show that the time-frequency analysis of stellar light curves using the wavelet transform is a practical tool for identifying rotation, magnetic activity, and pulsation signatures. We present the wavelet spectral composition and multiscale variations of the time series for four classes of stars: targets dominated by magnetic activity, stars with transiting planets, those with binary transits, and pulsating stars. We applied the Morlet wavelet (6th order), which offers high time and frequency resolution. By applying the wavelet transform to the signal, we obtain the wavelet local and global power spectra. The first is interpreted as energy distribution of the signal in time-frequency space, and the second is obtained by time integration of the local map. Since the wavelet transform is a useful mathematical tool for nonstationary signals, this technique applied to Kepler and CoRoT light curves allows us to clearly identify particular signatures for different phenomena. In particular, patterns were identified for the temporal evolution of the rotation period and other periodicity due to active regions affecting these light curves. In addition, a beat-pattern vii signature in the local wavelet map of pulsating stars over the entire time span was also detected. The second method is based on starspots detection during transits of an extrasolar planet orbiting its host star. As a planet eclipses its parent star, we can detect physical phenomena on the surface of the star. If a dark spot on the disk of the star is partially or totally eclipsed, the integrated stellar luminosity will increase slightly. By analyzing the transit light curve it is possible to infer the physical properties of starspots, such as size, intensity, position and temperature. By detecting the same spot on consecutive transits, it is possible to obtain additional information such as the stellar rotation period in the planetary transit latitude, differential rotation, and magnetic activity cycles. Transit observations of CoRoT-18 and Kepler-17 were used to implement this model.