906 resultados para WASTE-WATERS
Resumo:
A flow system designed with solenoid micro-pumps is proposed for the determination of paraquat in natural waters. The procedure involves the reaction of paraquat with dehydroascorbic acid followed by spectrophotometric measurements. The proposed procedure minimizes the main drawbacks related to the standard chromatographic procedure and to flow analysis and manual methods with spectrophotometric detection based on the reaction with sodium dithionite, i.e. high solvent consumption and waste generation and low sampling rate for chromatography and high instability of the reagent in the spectrophotometric procedures. A home-made 10-cm optical-path flow cell was employed for improving sensitivity and detection limit. Linear response was observed for paraquat concentrations in the range 0.10-5.0 mg L-1. The detection limit (99.7% confidence level), sampling rate and coefficient of variation (n = 10) were estimated as 22 mu g L-1, 63 measurements per hour and 1.0%, respectively. Results of determination of paraquat in natural water samples were in agreement with those achieved by the chromatographic reference procedure at the 95% confidence level. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The dissertation is based on four articles dealing with recalcitrant lignin water purification. Lignin, a complicated substance and recalcitrant to most treatment technologies, inhibits seriously pulp and paper industry waste management. Therefore, lignin is studied, using WO as a process method for its degradation. A special attention is paid to the improvement in biodegradability and the reduction of lignin content, since they have special importance for any following biological treatment. In most cases wet oxidation is not used as a complete ' mineralization method but as a pre treatment in order to eliminate toxic components and to reduce the high level of organics produced. The combination of wet oxidation with a biological treatment can be a good option due to its effectiveness and its relatively low technology cost. The literature part gives an overview of Advanced Oxidation Processes (AOPs). A hot oxidation process, wet oxidation (WO), is investigated in detail and is the AOP process used in the research. The background and main principles of wet oxidation, its industrial applications, the combination of wet oxidation with other water treatment technologies, principal reactions in WO, and key aspects of modelling and reaction kinetics are presented. There is also given a wood composition and lignin characterization (chemical composition, structure and origin), lignin containing waters, lignin degradation and reuse possibilities, and purification practices for lignin containing waters. The aim of the research was to investigate the effect of the operating conditions of WO, such as temperature, partial pressure of oxygen, pH and initial concentration of wastewater, on the efficiency, and to enhance the process and estimate optimal conditions for WO of recalcitrant lignin waters. Two different waters are studied (a lignin water model solution and debarking water from paper industry) to give as appropriate conditions as possible. Due to the great importance of re using and minimizing the residues of industries, further research is carried out using residual ash of an Estonian power plant as a catalyst in wet oxidation of lignin-containing water. Developing a kinetic model that includes in the prediction such parameters as TOC gives the opportunity to estimate the amount of emerging inorganic substances (degradation rate of waste) and not only the decrease of COD and BOD. The degradation target compound, lignin is included into the model through its COD value (CODligning). Such a kinetic model can be valuable in developing WO treatment processes for lignin containing waters, or other wastewaters containing one or more target compounds. In the first article, wet oxidation of "pure" lignin water was investigated as a model case with the aim of degrading lignin and enhancing water biodegradability. The experiments were performed at various temperatures (110 -190°C), partial oxygen pressures (0.5 -1.5 MPa) and pH (5, 9 and 12). The experiments showed that increasing the temperature notably improved the processes efficiency. 75% lignin reduction was detected at the lowest temperature tested and lignin removal improved to 100% at 190°C. The effect of temperature on the COD removal rate was lower, but clearly detectable. 53% of organics were oxidized at 190°C. The effect of pH occurred mostly on lignin removal. Increasing the pH enhanced the lignin removal efficiency from 60% to nearly 100%. A good biodegradability ratio (over 0.5) was generally achieved. The aim of the second article was to develop a mathematical model for "pure" lignin wet oxidation using lumped characteristics of water (COD, BOD, TOC) and lignin concentration. The model agreed well with the experimental data (R2 = 0.93 at pH 5 and 12) and concentration changes during wet oxidation followed adequately the experimental results. The model also showed correctly the trend of biodegradability (BOD/COD) changes. In the third article, the purpose of the research was to estimate optimal conditions for wet oxidation (WO) of debarking water from the paper industry. The WO experiments were' performed at various temperatures, partial oxygen pressures and pH. The experiments showed that lignin degradation and organics removal are affected remarkably by temperature and pH. 78-97% lignin reduction was detected at different WO conditions. Initial pH 12 caused faster removal of tannins/lignin content; but initial pH 5 was more effective for removal of total organics, represented by COD and TOC. Most of the decrease in organic substances concentrations occurred in the first 60 minutes. The aim of the fourth article was to compare the behaviour of two reaction kinetic models, based on experiments of wet oxidation of industrial debarking water under different conditions. The simpler model took into account only the changes in COD, BOD and TOC; the advanced model was similar to the model used in the second article. Comparing the results of the models, the second model was found to be more suitable for describing the kinetics of wet oxidation of debarking water. The significance of the reactions involved was compared on the basis of the model: for instance, lignin degraded first to other chemically oxidizable compounds rather than directly to biodegradable products. Catalytic wet oxidation of lignin containing waters is briefly presented at the end of the dissertation. Two completely different catalysts were used: a commercial Pt catalyst and waste power plant ash. CWO showed good performance using 1 g/L of residual ash gave lignin removal of 86% and COD removal of 39% at 150°C (a lower temperature and pressure than with WO). It was noted that the ash catalyst caused a remarkable removal rate for lignin degradation already during the pre heating for `zero' time, 58% of lignin was degraded. In general, wet oxidation is not recommended for use as a complete mineralization method, but as a pre treatment phase to eliminate toxic or difficultly biodegradable components and to reduce the high level of organics. Biological treatment is an appropriate post treatment method since easily biodegradable organic matter remains after the WO process. The combination of wet oxidation with subsequent biological treatment can be an effective option for the treatment of lignin containing waters.
Resumo:
Marine yeasts (33 strains) were isolated from the coastal and offshore waters off Cochin. The isolates were identified and then characterized for the utilization of starch, gelatin, lipid, cellulose, urea, pectin, lignin, chitin and prawn-shell waste. Most of the isolates were Candida species. Based on the biochemical characterization, four potential strains were selected and their optimum pH and NaCI concentration for growth were determined. These strains were then inoculated into prawn-shell waste and SCP (single cell protein) generation was noted in terms of the increase in protein content of the final product.
Resumo:
A flow system designed with solenoid valves is proposed for determination of weak acid dissociable cyanide, based on the reaction with o-phthalaldehyde (OPA) and glycine yielding a highly fluorescent isoindole derivative. The proposed procedure minimizes the main drawbacks related to the reference batch procedure, based on reaction with barbituric acid and pyridine followed by spectrophotometric detection, i.e., use of toxic reagents, high reagent consumption and waste generation, low sampling rate, and poor sensitivity. Retention of the sample zone was exploited to increase the conversion rate of the analyte with minimized sample dispersion. Linear response (r=0.999) was observed for cyanide concentrations in the range 1-200 mu g L(-1), with a detection limit (99.7% confidence level) of 0.5 mu g L(-1)(19 nmol L(-1)). The sampling rate and coefficient of variation (n=10) were estimated as 22 measurements per hour and 1.4%, respectively. The results of determination of weak acid dissociable cyanide in natural water samples were in agreement with those achieved by the batch reference procedure at the 95% confidence level. Additionally to the improvement in the analytical features in comparison with those of the flow system with continuous reagent addition (sensitivity and sampling rate 90 and 83% higher, respectively), the consumption of OPA was 230-fold lower.
Resumo:
Groundwaters; and surface waters around two waste disposal areas at Rio Claro municipality, nearly in the center of São Paulo State, Brazil, were chemically analysed with the purpose of evaluating the influence on the water quality of the chemicals released without any care with the environment and using a prevention system for the containment of environmentally polluting substances.
Resumo:
Groundwaters and surface waters from an area of treatment of sand for industrial purposes at Analandia municipality, nearly in the center of Sao Paulo State, Brazil, were chemically and isotopically analyzed with two aims: to evaluate if the anthropogenic activities that has taken place for the last 6 years is affecting the quality of the hydrological resources and to relate the hydrogeochemical behaviour of the uranium isotopes 234U and 238U with the pattern of circulation of groundwaters.
Resumo:
Produced water in oil fields is one of the main sources of wastewater generated in the industry. It contains several organic compounds, such as benzene, toluene, ethyl benzene and xylene (BTEX), whose disposal is regulated by law. The aim of this study is to investigate a treatment of produced water integrating two processes, i.e., induced air flotation (IAF) and photo-Fenton. The experiments were conducted in a column flotation and annular lamp reactor for flotation and photodegradation steps, respectively. The first order kinetic constant of IAF for the wastewater studied was determined to be 0.1765 min(-1) for the surfactant EO 7. Degradation efficiencies of organic loading were assessed using factorial planning. Statistical data analysis shows that H2O2 concentration is a determining factor in process efficiency. Degradations above 90% were reached in all cases after 90 min of reaction, attaining 100% mineralization in the optimized concentrations of Fenton reagents. Process integration was adequate with 100% organic load removal in 20 min. The results of the integration of the IAF with the photo-Fenton allowed to meet the effluent limits established by Brazilian legislation for disposal. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The occurrence of waste pharmaceuticals has been identified and well documented in water sources throughout North America and Europe. Many studies have been conducted which identify the occurrence of various pharmaceutical compounds in these waters. This project is an extensive review of the documented evidence of this occurrence published in the scientific literature. This review was performed to determine if this occurrence has a significant impact on the environment and public health. This project and review found that pharmaceuticals such as sex hormone drugs, antibiotic drugs and antineoplastic/cytostatic agents as well as their metabolites have been found to occur in water sources throughout the United States at levels high enough to have noticeable impacts on human health and the environment. It was determined that the primary sources of this occurrence of pharmaceuticals were waste water effluent and solid wastes from sewage treatment plants, pharmaceutical manufacturing plants, healthcare and biomedical research facilities, as well as runoff from veterinary medicine applications (including aquaculture). ^ In addition, current public policies of US governmental agencies such as the Environmental Protection Agency (EPA), Food and Drug Administration (FDA), and Drug Enforcement Agency (DEA) have been evaluated to see if they are doing a sufficient job at controlling this issue. Specific recommendations for developing these EPA, FDA, and DEA policies have been made to mitigate, prevent, or eliminate this issue.^ Other possible interventions such as implementing engineering controls were also evaluated in order to mitigate, prevent and eliminate this issue. These engineering controls include implementing improved current treatment technologies such as the advancement and improvement of waste water treatment processes utilized by conventional sewage treatment and pharmaceutical manufacturing plants. In addition, administrative controls such as the use of “green chemistry” in drug synthesis and design were also explored and evaluated as possible alternatives to mitigate, prevent, or eliminate this issue. Specific recommendations for incorporating these engineering and administrative controls into the applicable EPA, FDA, and DEA policies have also been made.^
Resumo:
NORM (Naturally Occurring Radioactive Material) Waste Policies for the nation's oil and gas producing states have been in existence since the 1980's, when Louisiana was the first state to develop a NORM regulatory program in 1989. Since that time, expectations for NORM Waste Policies have evolved, as Health, Safety, Environment, and Social responsibility (HSE & SR) grows increasingly important to the public. Therefore, the oil and gas industry's safety and environmental performance record will face challenges in the future, about its best practices for managing the co-production of NORM wastes. ^ Within the United States, NORM is not federally regulated. The U.S. EPA claims it regulates NORM under CERCLA (superfund) and the Clean Water Act. Though, there are no universally applicable regulations for radium-based NORM waste. Therefore, individual states have taken responsibility for developing NORM regulatory programs, because of the potential radiological risk it can pose to man (bone and lung cancer) and his environment. This has led to inconsistencies in NORM Waste Policies as well as a NORM management gap in both state and federal regulatory structures. ^ Fourteen different NORM regulations and guidelines were compared between Louisiana and Texas, the nation's top two petroleum producing states. Louisiana is the country's top crude oil producer when production from its Federal offshore waters are included, and fourth in crude oil production, behind Texas, Alaska, and California when Federal offshore areas are excluded. Louisiana produces more petroleum products than any state but Texas. For these reasons, a comparative analysis between Louisiana and Texas was undertaken to identify differences in their NORM regulations and guidelines for managing, handling and disposing NORM wastes. Moreover, this analysis was undertaken because Texas is the most explored and drilled worldwide and yet appears to lag behind its neighboring state in terms of its NORM Waste Policy and developing an industry standard for handling, managing and disposing NORM. As a result of this analysis, fourteen recommendations were identified.^
Resumo:
Decades of mixed messages from three federal agencies left many Americans unaware of the hazards associated with the indiscriminate disposal of unwanted or expired medicines. For this Capstone project, a systematic review of state and federal regulations was undertaken to determine how these laws obstruct household pharmaceutical waste collection. In addition, a survey of 654 Atlanta residents was conducted to evaluate unwanted medicine disposal habits, awareness of pharmaceutical compounds being detected in drinking water, surface, and ground waters, and willingness to participate in a household pharmaceutical waste collection program. Survey responses were tabulated to provide overall results and by age group, gender, and race. A household pharmaceutical waste collection plan was developed for the city and included as an appendix.
Resumo:
"Contract no. CR-815829."
Resumo:
In the area of international environmental law this thesis proposes the formulation of one-step planning and permitting regulation for the integrated utilisation of new surface mines as depositories for municipal solid waste. Additionally, the utilisation of abandoned and currently operated surface mines is proposed as solid waste landfills as an integral step in their reclamation. Existing laws, litigation and issues in the United Kingdom, the U.S. and Canada are discussed because of their common legal system, language and heritage. The critical shortage of approved space for disposal of solid waste has caused an urgent and growing problem for both the waste disposal industry and society. Surface mining can serve three important environmental and societal functions inuring to the health and welfare of the public: (1) providing basic minerals for goods and construction; (20 sequentially, to provide critically needed, safe burial sites for society's wastes, and (3) to conserve land by dual purpose use and to restore derelict land to beneficial surface use. Currently, the first two functions are treated environmentally, and in regulation, as two different siting problems, yet they both are earth-disturbing and excavating industries requiring surface restoration. The processes are largely duplicative and should be combined for better efficiency, less earth disturbance, conservation of land, and for fuller and better reclamation of completed surface mines returning the surfaces to greater utility than present mined land reclamation procedures. While both industries are viewed by a developed society and its communities as "bad neighbours", they remain essential and critical for mankind's existence and welfare. The study offers successful examples of the integrated process in each country. The study argues that most non-fuel surface mine openings, if not already safe, can economically, through present containment technology, be made environmentally safe for use as solid waste landfills. Simultaneously, the procedure safeguards and monitors protection of ground and surface waters from landfill contamination.
Resumo:
The common occurrence of human derived contaminants like pharmaceuticals, steroids and hormones in surface waters has raised the awareness of the role played by the release of treated or untreated sewage in the water quality along sensitive coastal ecosystems. South Florida is home to many important protected environments ranging from wetlands to coral reefs which are in close proximity to large metropolitan cities. Since large portions of South Florida and most of the Florida Keys population are not served by modern sewage treatment plants and rely heavily on the use of inefficient septic systems; a comprehensive survey of selected human waste contamination markers is needed in these areas to assess water quality with respect to non-traditional micro-constituents. ^ This study reports the development and application of new sensitive and selective analytical methods for the fast screening of multiple wastewater tracers, classified as Emergent Pollutants of Concern (EPOC). Novel methods for the trace analysis of non-traditional markers of human-specific contamination such as aminopropanone were developed and used to assess the potential of non-traditional markers as wastewater tracers. ^ During our investigation, surface water samples collected from near shore environments along the South Florida were analyzed for fifteen hormones and steroids, and five commonly detected pharmaceuticals. The compounds most frequently detected were: coprostanol, cholesterol, estrone, β-estradiol, caffeine, triclosan and DEET. Concentrations of caffeine, bisphenol A and DEET were usually higher and more prevalent than the hormonal steroids. In general, it was found that common pharmaceuticals and steroids are widely present in major coastal environments in South Florida. It is also evident that aquatic bodies in heavily urbanized sectors such as the Miami River and Key Largo Harbor contain higher concentrations of several compounds while relatively open bay waters and agricultural areas show reduced chemical signatures. Concentrations of hormones in the Little Venice area of Marathon Key were above the Lowest Observable Effect Levels (LOELs) for several species, indicating that biological resources in this area are at risk. Water quality issues in some of these coastal water environments go beyond eutrophication, thus EPOC should be the target goal for future mitigation projects. ^
Resumo:
Acid drainage influence on the water and sediment quality was investigated in a coal mining area (southern Brazil). Mine drainage showed pH between 3.2 and 4.6 and elevated concentrations of sulfate, As and metals, of which, Fe, Mn and Zn exceeded the limits for the emission of effluents stated in the Brazilian legislation. Arsenic also exceeded the limit, but only slightly. Groundwater monitoring wells from active mines and tailings piles showed pH interval and chemical concentrations similar to those of mine drainage. However, the river and ground water samples of municipal public water supplies revealed a pH range from 7.2 to 7.5 and low chemical concentrations, although Cd concentration slightly exceeded the limit adopted by Brazilian legislation for groundwater. In general, surface waters showed large pH range (6 to 10.8), and changes caused by acid drainage in the chemical composition of these waters were not very significant. Locally, acid drainage seemed to have dissolved carbonate rocks present in the local stratigraphic sequence, attenuating the dispersion of metals and As. Stream sediments presented anomalies of these elements, which were strongly dependent on the proximity of tailings piles and abandoned mines. We found that precipitation processes in sediments and the dilution of dissolved phases were responsible for the attenuation of the concentrations of the metals and As in the acid drainage and river water mixing zone. In general, a larger influence of mining activities on the chemical composition of the surface waters and sediments was observed when enrichment factors in relation to regional background levels were used.