880 resultados para WASTE-WATER IRRIGATION


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Reverse osmosis (RO) membranes have been used extensively in water desalination plants, waste water treatment in industries, agricultural farms and drinking water production applications. The objective of this work is to impart antibacterial and antifungal activities to commercially available RO membrane used in water purification systems by incorporating biogenic silver nanoparticles (AgNPs) synthesized using Rosa indica wichuriana hybrid leaf extract. The morphology and surface topography of uncoated and AgNPs-coated RO membrane were studied using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Elemental composition of the AgNPs-coated RO membrane was analyzed by energy-dispersive X-ray spectroscopy (EDAX). The functional groups were identified by Fourier Transform Infrared spectroscopy (FT-IR). Hydrophilicity of the uncoated and AgNPs-coated RO membrane was analyzed using water contact angle measurements. The thermal properties were studied by thermogravimetric analysis (TGA). The AgNPs incorporated RO membrane exhibited good antibacterial and antifungal activities against pathogenic bacterial strains such as E. coli, S. aureus, M. luteus, K. pneumoniae, and P. aeruginosa and fungal strains such as Candida tropicalis, C. krusei, C. glabrata, and C. albicans.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The utilization of waste waters in aquaculture were briefly reviewed. At the National Institute for Freshwater Fisheries Research (NIFFR), stocking density (20 to 160 fish/m super(3)) experiments using Sarotherodon galilaeus (without supplementary feeding) in floating cages were carried out in a sewage pond (0.4ha surface area). Cage culture of S. galilaeus was observed to have potentials in waste waters aquaculture. Recommendations were made on the execution of an intergrated waste water management and utilization.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A comparative study was carried out between the two biggest creeks along the Arabian Gulf coast of the United Arab Emirates to evaluate impacts of sewage and industrial effluents on their hydrochemical characteristics. Surface and bottom water samples were collected from Abu Dhabi and Dubai creeks during the period from October 1994 to September 1995. The hydrochemical parameters studied were: temperature (21.10-34.00°C), salinity (37.37-47.09%), transparency (0.50-10.0 m), pH (7.97-8.83), dissolved oxygen (1.78-13.93 mg/l) and nutrients ammonia (ND- 13.12,ug-at N/1), nitrite (ND-6.66 ,ug-at N/1), nitrate (ND- 41.18 ,ug-at N/1), phosphate (ND- 13.06 ,ug-at P/1), silicate (0.68-32.50 ,ug-at Si/1), total phosphorus (0.26- 21.48 ,ug-at P/1), and total silicon (0.95- 40.32 ,ug-at Si/1). The present study indicates clearly that seawater of Abu-Dhabi Creek was warmer (28.l2°C) than Dubai (27.56°C) resulting in a higher rate of evaporation. Owing to more evaporation, salinity levels showed higher levels at Abu Dhabi (43.33%) compared to Dubai (39.03%) seawater. The study also revealed higher secchi disc readings at Abu Dhabi Creek (4.68 m) as compared to Dubai Creek (2.60 m) suggesting more transparency at Abu Dhabi Creek. Whereas, seawater of Dubai exhibited higher levels of pH (1.03 times), and dissolved oxygen (1.05 times) than Abu Dhabi seawater due to an increase in productivity. Meantime, seawater of Dubai showed higher tendency to accumulate ammonia (8.22 times), nitrite (10.93 times), nitrate (5.85 times), phosphate (10.64 times), silicate (1.60 times), total phosphorus (3.19 times), and total silicon (1.54 times) compared to Abu Dhabi seawater due to the enrichment of seawater at Dubai with domestic sewage waters which has distinctly elevated the levels of the nutrient salts particularly in inner-most parts of the creek leading to eutrophication signs. The changes occurred in the receiving creek water of Dubai as a result of waste-water disposal that have also reflected on the atomic ratios of nit: Effect of pollution rogen: phosphorus: silicon.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nakivubo swamp (papyrus wetland) is located in the south east of the city of Kampala, Uganda. This swamp has been receiving waste water from Nakivubo channel for more than two decades. This investigation was aimed at monitoring the level of pollutants (nutrients and faecal coliforms) as the waste water filtrates through the swamp and the flow patterns of waste water through the swamp. From this preliminary investigation it was found out that the waste water is not evenly distributed over the swamp. Also high levels of pollutants seem to filtrate through the swamp and enter Inner Murchison Bay - Lake Victoria. Further research is under way to investigate in more detail the capacity of Nakivubo swamp to remove nutrients/pollutants from waste water flowing through it and the dominant mechanisms/processes involved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Taihu Lake is the third largest fresh water lake in China. With the fast economic development, abundant industrial and agricultural waste water has been discharged into Taihu Lake, causing the eutrophication of the water quality, which greatly affected the water utility. In the past decades, the treatment of Taihu Lake has witnessed limited success. Therefore, it is practically and theoretically significant to study the eutrophication of Taihu Lake. This research has focused on the issue of water quality including the characteristics of spatial and temporal distributions, and the rules of nutrient diffusion in the Taihu lake area. Based on the monitoring data, the basis distribution characteristics of water quality in Taihu Lake are analyzed. Comparing Taihu Lake with other Lakes shows that one important reason for Taihu eutrophication is the long period of water retention. A transporting and diffusing model of Taihu nutrient is developed by combining with the hydrodynamics model. Using the model, the concentration field of the total phosphorus (TP) and the influence of wind-driven current are numerically investigated, which leads to the conclusion that the flow field has a great influence on the spatial and temporal distributions of TP in Taihu Lake. Furthermore, the effect for improving the water quality by the project of water diversion from the Yangtze River to Taihu Lake was analyzed by simulation. The results demonstrate that short-term water diversion cannot improve the water quality of the heavily-polluted Meiliang Bay and the western bank areas of Taihu Lake.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The safe disposal of liquid wastes associated with oil and gas production in the United States is a major challenge given their large volumes and typically high levels of contaminants. In Pennsylvania, oil and gas wastewater is sometimes treated at brine treatment facilities and discharged to local streams. This study examined the water quality and isotopic compositions of discharged effluents, surface waters, and stream sediments associated with a treatment facility site in western Pennsylvania. The elevated levels of chloride and bromide, combined with the strontium, radium, oxygen, and hydrogen isotopic compositions of the effluents reflect the composition of Marcellus Shale produced waters. The discharge of the effluent from the treatment facility increased downstream concentrations of chloride and bromide above background levels. Barium and radium were substantially (>90%) reduced in the treated effluents compared to concentrations in Marcellus Shale produced waters. Nonetheless, (226)Ra levels in stream sediments (544-8759 Bq/kg) at the point of discharge were ~200 times greater than upstream and background sediments (22-44 Bq/kg) and above radioactive waste disposal threshold regulations, posing potential environmental risks of radium bioaccumulation in localized areas of shale gas wastewater disposal.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We show in this study that the combination of a swirl flow reactor and an antimicrobial agent (in this case copper alginate beads) is a promising technique for the remediation of contaminated water in waste streams recalcitrant to UV-C treatment. This is demonstrated by comparing the viability of both common and UV-C resistant organisms in operating conditions where UV-C proves ineffective - notably high levels of solids and compounds which deflect UV-C. The swirl flow reactor is easy to construct from commonly available plumbing parts and may prove a versatile and powerful tool in waste water treatment in developing countries.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Using caffeic acid and p-hydroxybenzoic acid as templates, two molecularly imprinted polymers (MIPs) were prepared that were used for isolation of polyphenols from olive mill waste water samples (OMWWs) without previous pre-treatment. For the preparation of the caffeic acid MIPs 4-vinylpyridine, allylurea, allylaniline and methacrylic acid were tested as functional monomers, ethylene glycol dimethylacrylate (EDMA), pentaerythritol trimethylacrylate (PETRA) and divinylbenzene 80 (DVB80) as cross-linkers and tetrahydrofuran as porogen. For p-hydroxybenzoic acid 4-vinylpyridine, allylurea and allylaniline were tested as functional monomers, EDMA and PETRA as cross-linkers and acetonitrile as porogen. The performance of the synthesized polymers was evaluated against seven structurally related compounds by means of polymer-based HPLC. The two polymers that presented the most interesting properties were further evaluated by batch rebinding and from the derived isotherms their capacity and binding strength were determined. Using solid-phase extraction (SPE), their ability to recognize and bind the template molecule from an aqueous solution as well as the pH dependence of the binding strength were explored. After establishing the best SPE protocol, an aqueous model mixture of compounds and a raw OMWWs sample were loaded on the two best polymers. The result of the consecutive use of the two polymers on the same sample was explored. It was concluded that acidic conditions favour the recognition abilities of both polymers and that they can be used for a quick and efficient isolation of the polyphenol fraction directly from raw OMWW.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hydrocarbons contamination of the marine environment generated by the offshore oil and gas industry is generated from a number of sources including oil contaminated drill cuttings and produced waters. The removal of hydrocarbons from both these sources is one of the most significant challenges facing this sector as it moves towards zero emissions. The application of a number of techniques which have been used to successfully destroy hydrocarbons in produced water and waste water effluents has previously been reported. This paper reports the application of semiconductor photocatalysis as a final polishing step for the removal of hydrocarbons from two waste effluent sources. Two reactor concepts were considered: a simple flat plate immobilised film unit, and a new rotating drum photocatalytic reactor. Both units proved to be effective in removing residual hydrocarbons from the effluent with the drum reactor reducing the hydrocarbon content by 90% under 10 minutes. 

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Monitoring of coastal and estuarine water quality has been traditionally performed by sampling with subsequent laboratory analysis. This has the disadvantages of low spatial and temporal resolution and high cost. In the last decades two alternative techniques have emerged to overcome this drawback: profiling and remote sensing. Profiling using multi-parameter sensors is now in a commercial stage. It can be used, tied to a boat, to obtain a quick “picture” of the system. The spatial resolution thus increases from single points to a line coincident with the boat track. The temporal resolution however remains unchanged since campaigns and resources involved are basically the same. The need for laboratory analysis was reduced but not eliminated because parameters like nutrients, microbiology or metals are still difficult to obtain with sensors and validation measurements are still needed. In the last years the improvement in satellite resolution has enabled its use for coastal and estuarine water monitoring. Although spatial coverage and resolution of satellite images in the present is already suitable to coastal and estuarine monitoring, temporal resolution is naturally limited to satellite passages and cloud cover. With this panorama the best approach to water monitoring is to integrate and combine data from all these sources. The natural tools to perform this integration are numerical models. Models benefit from the different sources of data to obtain a better calibration. After calibration they can be used to extend spatially and temporally the methods resolution. In Algarve (South of Portugal) a monitoring effort using this approach is being undertaken. The monitoring effort comprises five different locations including coastal waters, estuaries and coastal lagoons. The objective is to establish the base line situation to evaluate the impact of Waste Water Treatment Plants design and retrofitting. The field campaigns include monthly synoptic profiling, using an YSI 6600 multi-parameter system, laboratory analysis and fixed stations. The remote sensing uses ENVISAT\MERIS Level 2 Full Resolution data. This data is combined and used with the MOHID modelling system to obtain an integrate description of the systems. The results show the limitations of each method and the ability of the modelling system to integrate the results and to produce a comprehensive picture of the system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The impact of urban waste-water and non-point nitrate discharges in estuarine and near-shore coastal waters are analyzed. The study is focused on the effects of applying the European directives 91/271/EEC and 91/676/EEC to these systems. 4 Portuguese estuaries and two coastal lagoons with different characteristics are studied. A modelling system is applied and calibrated in each system. Three nitrate load scenarios are examined. It is shown that the morphologic and hydrodynamic characteristics of the domain largely control the ecological processes in these systems. The primary production limitation factors are split into “biologic” and “hydrodynamic” components. The physical limitation due to hydrodynamic and residence time is the most important factor. The combined limitation of “biologic” factors (temperature, light and nutrients availability) control productivity only in the systems where physical limitation is not important.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aquaculture is one of the fastest growing food sectors in the world. Amongst the various branches of aquaculture, shrimp culture has expanded rapidly across the globe because of its faster growth rate, short culture period, high export value and demand in the International market. Indian shrimp farming has experienced phenomenal development over the decades due to its excellent commercial viability. Farmers have adopted a number of innovative technologies to improve the production and to maximize the returns per unit area. The culture methods adopted can be classified in to extensive, modified extensive and semi intensive based on the management strategies adopted in terms of pond size, stocking density, feeding and environmental control. In all these systems water exchanges through the natural tidal effects, or pump fed either from creek or from estuaries is a common practice. In all the cases, the systems are prone to epizootics due to the pathogen introduction through the incoming water, either brought by vectors, reservoir hosts, infected tissue debris and free pathogens themselves. In this scenario, measures to prevent the introduction of pathogen have become a necessity to protect the crop from the onslaught of diseases as well as to prevent the discharge of waste water in to the culture environment.The present thesis deals with Standardization of bioremediation technology for zero water exchange shrimp culture system

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Faisalabad city is surrounded by agricultural lands, where farmers are growing vegetables, grain crops, and fodder for auto-consumption and local marketing. To study the socioeconomic impact and resource use in these urban and peri-urban agricultural production (UPA) systems, a baseline survey was conducted during 2009–2010. A total of 140 households were selected using a stratified sampling method and interviewed with a structured questionnaire. The results revealed that 96 % of the households rely on agriculture as their main occupation. Thirty percent of the households were owners of the land and the rest cultivated either rented or sharecropped land. Most of the families (70 %) were headed by a member with primary education, and only 10 % of the household head had a secondary school certificate. Irrigationwater was obtained from waste water (37 %), canals (27 %), and mixed alternative sources (36 %). A total of 35 species were cultivated in the UPA systems of which were 65% vegetables, 15% grain and fodder crops, and 5% medicinal plants. Fifty-nine percent of the households cultivated wheat, mostly for auto-consumption. The 51 % of the respondents grew cauliflower (Brassica oleracea L.) and gourds (Cucurbitaceae) in the winter and summer seasons, respectively. Group marketing was uncommon and most of the farmers sold their produce at the farm gate (45 %) and on local markets (43 %). Seeds and fertilizers were available from commission agents and dealers on a credit basis with the obligation to pay by harvested produce. A major problem reported by the UPA farmers of Faisalabad was the scarcity of high quality irrigation water, especially during the hot dry summer months, in addition to lacking adequate quantities of mineral fertilizers and other inputs during sowing time. Half of the respondents estimated their daily income to be less than 1.25 US$ and spent almost half of it on food. Monthly average household income and expenses were 334 and 237 US$, respectively.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Urban and peri-urban agriculture (UPA) contributes to food security, serves as an opportunity for income generation, and provides recreational services to urban citizens. With a population of 21 Million people, of which 60 % live in slums, UPA activities can play a crucial role in supporting people’s livelihoods in Mumbai Metropolitan Region (MMR). This study was conducted to characterize the railway gardens, determine their role in UPA production, and assess potential risks. It comprises a baseline survey among 38 railway gardeners across MMR characterized by different demographic, socio-economic, migratory, and labour characteristics. Soil, irrigation water, and plant samples were analyzed for nutrients, heavy metals, and microbial load. All the railway gardeners practiced agriculture as a primary source of income and cultivated seasonal vegetables such as lady’s finger (Abelmoschus esculentus L. Moench), spinach (Spinacia oleracea L.), red amaranth (Amaranthus cruentus L.), and white radish (Raphanus sativus var. longipinnatus) which were irrigated with waste water. This irrigation water was loaded with 7–28 mg N l^(−1), 0.3–7 mg P l^(−1), and 8–32 mg K l^(−1), but also contained heavy metals such as lead (0.02–0.06 mg Pb l^(−1)), cadmium (0.03–0.17 mg Cd l^(−1)), mercury (0.001–0.005 mg Hg l^(−1)), and pathogens such as Escherichia coli (1,100 most probable number per 100 ml). Levels of heavy metals exceeded the critical thresholds in surface soils (Cr, Ni, and Sr) and produce (Pb, Cd, and Sr). The railway garden production systems can substantially foster employment and reduce economic deprivation of urban poor particularly slum dwellers and migrant people. However this production system may also cause possible health risks to producers and consumers.