873 resultados para Vocal-cord Dysfunction
Resumo:
A right-handed man developed a sudden transient, amnestic syndrome associated with bilateral hemorrhage of the hippocampi, probably due to Urbach-Wiethe disease. In the 3rd month, despite significant hippocampal structural damage on imaging, only a milder degree of retrograde and anterograde amnesia persisted on detailed neuropsychological examination. On systematic testing of recognition of facial and vocal expression of emotion, we found an impairment of the vocal perception of fear, but not that of other emotions, such as joy, sadness and anger. Such selective impairment of fear perception was not present in the recognition of facial expression of emotion. Thus emotional perception varies according to the different aspects of emotions and the different modality of presentation (faces versus voices). This is consistent with the idea that there may be multiple emotion systems. The study of emotional perception in this unique case of bilateral involvement of hippocampus suggests that this structure may play a critical role in the recognition of fear in vocal expression, possibly dissociated from that of other emotions and from that of fear in facial expression. In regard of recent data suggesting that the amygdala is playing a role in the recognition of fear in the auditory as well as in the visual modality this could suggest that the hippocampus may be part of the auditory pathway of fear recognition.
Resumo:
BACKGROUND: Both non-traumatic and traumatic spinal cord injuries have in common that a relatively minor structural lesion can cause profound sensorimotor and autonomous dysfunction. Besides treating the cause of the spinal cord injury the main goal is to restore lost function as far as possible. AIM: This article provides an overview of current innovative diagnostic (imaging) and therapeutic approaches (neurorehabilitation and neuroregeneration) aiming for recovery of function after non-traumatic and traumatic spinal cord injuries. MATERIAL AND METHODS: An analysis of the current scientific literature regarding imaging, rehabilitation and rehabilitation strategies in spinal cord disease was carried out. RESULTS: Novel magnetic resonance imaging (MRI) based techniques (e.g. diffusion-weighted MRI and functional MRI) allow visualization of structural reorganization and specific neural activity in the spinal cord. Robotics-driven rehabilitative measures provide training of sensorimotor function in a targeted fashion, which can even be continued in the homecare setting. From a preclinical point of view, defined stem cell transplantation approaches allow for the first time robust structural repair of the injured spinal cord. CONCLUSION: Besides well-established neurological and functional scores, MRI techniques offer the unique opportunity to provide robust and reliable "biomarkers" for restorative therapeutic interventions. Function-oriented robotics-based rehabilitative interventions alone or in combination with stem cell based therapies represent promising approaches to achieve substantial functional recovery, which go beyond current rehabilitative treatment efforts.
Non-traumatic spinal cord ischaemia in childhood - clinical manifestation, neuroimaging and outcome.
Resumo:
BACKGROUND: Spinal cord ischaemia is rare in childhood and information on clinical presentation and outcome is scarce. METHODS: This is a retrospective analysis of eight patients and 75 additional cases from the literature. Data search included: patient's age, primary manifestation, risk factors, neuroimaging and outcome. RESULTS: Five female and three male patients gave consent to participate. Mean age was 12.5 years (10-15 years). Six patients presented with paraplegia; this was preceded by pain in four. Brown Sequard syndrome and quadriparesis were the two others' presenting condition. Sensation levels were thoracolumbar in seven cases. Bladder dysfunction only or bladder and bowel dysfunction were reported in eight and five patients respectively. Time to maximal symptom manifestation was <12 h in 7/8. Risk factors included surgery, minor trauma, recent infection, and thrombophilia. Mean follow-up was 3.3 years (0.25-6.3 years). Three patients remained wheelchair-dependent and three patients were ambulatory without aid. Bladder function recovered fully in five children. Most affected aspects of quality of life were physical and mental well-being and self-perception. T2-weighted-MR images showed pencil-like hyperintensity (8/8) in sagittal and H-shaped or snake-eyes-like lesion (6/8) in axial views. Analyses of all 83 patients were in congruence with the above results of the study group. CONCLUSION: Spinal cord ischaemia in childhood presenting with pain, paraplegia, and bladder dysfunction has high morbidity concerning motor problems and quality of life. Acute arterial ischaemic event in children seems similar to adult events with respect to clinical presentation and, surprisingly, also in outcome.
Resumo:
Spinal cord infarction is much rarer than cerebral stroke, but its early recognition is important as it may signify serious aortic conditions. The most frequent type is anterior spinal artery syndrome, presenting with bilateral weakness (usually paraparesis), impairment of spinothalamic sensation and preservation of deep sensation. Depending on its level, it may present with respiratory dysfunction. More rarely, posterior infarcts sparing spinothalamic sensation but involving lemniscal sensation may be encountered. Unilateral, central or transverse infarction may also be seen probably on account of different mechanisms. Other rarer forms of spinal ischemia also include spinal TIAs, venous infarction, fibrocartilaginous embolism and decompression sickness.
Resumo:
La documentation scientifique fait état de la présence, chez l’adulte, de cellules souches et progénitrices neurales (CSPN) endogènes dans les zones sous-ventriculaire et sous-granulaire du cerveau ainsi que dans le gyrus denté de l’hippocampe. De plus, un postulat selon lequel il serait également possible de retrouver ce type de cellules dans la moelle épinière et le néocortex des mammifères adultes a été énoncé. L’encéphalopathie de Wernicke, un trouble neurologique grave toutefois réversible qui entraîne un dysfonctionnement, voire une défaillance du cerveau, est causée principalement par une carence importante en thiamine (CT). Des observations récentes laissent envisager que les facteurs en cause dans la prolifération et la différenciation des CSPN pourraient également jouer un rôle important lors d’un épisode de CT. L’hypothèse, selon laquelle l’identification de nouveaux métabolites entrant dans le mécanisme ou la séquence de réactions se soldant en une CT pourraient en faciliter la compréhension, a été émise au moyen d'une démarche en cours permettant d’établir le profil des modifications métaboliques qui surviennent en de telles situations. Cette approche a été utilisée pour constater les changements métaboliques survenus au niveau du foyer cérébral dans un modèle de rats déficients en thiamine (rats DT), particulièrement au niveau du thalamus et du colliculus inférieur (CI). La greffe de CSPN a quant à elle été envisagée afin d’apporter de nouvelles informations sur la participation des CSPN lors d’un épisode de CT et de déterminer les bénéfices thérapeutiques potentiels offerts par cette intervention. Les sujets de l’étude étaient répartis en quatre groupes expérimentaux : un premier groupe constitué de rats dont la CT était induite par la pyrithiamine (rats DTiP), un deuxième groupe constitué de rats-contrôles nourris ensemble (« pair-fed control rats » ou rats PFC) ainsi que deux groupes de rats ayant subi une greffe de CSPN, soit un groupe de rats DTiP greffés et un dernier groupe constitué de rats-contrôles (rats PFC) greffés. Les échantillons de foyers cérébraux (thalamus et CI) des quatre groupes de rats ont été prélevés et soumis à des analyses métabolomiques non ciblées ainsi qu’à une analyse visuelle par microscopie à balayage électronique (SEM). Une variété de métabolites-clés a été observée chez les groupes de rats déficients en thiamine (rats DTiP) en plus de plusieurs métabolites dont la documentation ne faisait pas mention. On a notamment constaté la présence d’acides biliaires, d’acide cynurénique et d’acide 1,9— diméthylurique dans le thalamus, alors que la présence de taurine et de carnosine a été observée dans le colliculus inférieur. L’étude a de plus démontré une possible implication des CSPN endogènes dans les foyers cérébraux du thalamus et du colliculus inférieur en identifiant les métabolites-clés ciblant les CSPN. Enfin, les analyses par SEM ont montré une amélioration notable des tissus à la suite de la greffe de CSPN. Ces constatations suggèrent que l’utilisation de CSPN pourrait s’avérer une avenue thérapeutique intéressante pour soulager la dégénérescence symptomatique liée à une grave carence en thiamine chez l’humain.
Resumo:
Scientific advances have been made to optimize the healing process in spinal cord injury. Studies have been developed to obtain effective treatments in controlling the secondary injury that occurs after spinal cord injury, which substantially changes the prognosis. Low-intensity laser therapy (LILT) has been applied in neuroscience due to its anti-inflammatory effects on biological tissue in the repairing process. Few studies have been made associating LILT to the spinal cord injury. The objective of this study was to investigate the effect of the LILT (GaAlAs laser-780 nm) on the locomotor functional recovery, histomorphometric, and histopathological changes of the spinal cord after moderate traumatic injury in rats (spinal cord injury at T9 and T10). Thirty-one adult Wistar rats were used, which were divided into seven groups: control without surgery (n = 3), control surgery (n = 3), laser 6 h after surgery (n = 5), laser 48 h after surgery (n = 5), medullar lesion (n = 5) without phototherapy, medullar lesion + laser 6 h after surgery (n = 5), and medullar lesion + laser 48 h after surgery (n = 5). The assessment of the motor function was performed using Basso, Beattie, and Bresnahan (BBB) scale and adapted Sciatic Functional Index (aSFI). The assessment of urinary dysfunction was clinically performed. After 21 days postoperative, the animals were euthanized for histological and histomorphometric analysis of the spinal cord. The results showed faster motor evolution in rats with spinal contusion treated with LILT, maintenance of the effectiveness of the urinary system, and preservation of nerve tissue in the lesion area, with a notorious inflammation control and increased number of nerve cells and connections. In conclusion, positive effects on spinal cord recovery after moderate traumatic spinal cord injury were shown after LILT.
Resumo:
Spinal cord injury (SCI) results not only in paralysis; but it is also associated with a range of autonomic dysregulation that can interfere with cardiovascular, bladder, bowel, temperature, and sexual function. The entity of the autonomic dysfunction is related to the level and severity of injury to descending autonomic (sympathetic) pathways. For many years there was limited awareness of these issues and the attention given to them by the scientific and medical community was scarce. Yet, even if a new system to document the impact of SCI on autonomic function has recently been proposed, the current standard of assessment of SCI (American Spinal Injury Association (ASIA) examination) evaluates motor and sensory pathways, but not severity of injury to autonomic pathways. Beside the severe impact on quality of life, autonomic dysfunction in persons with SCI is associated with increased risk of cardiovascular disease and mortality. Therefore, obtaining information regarding autonomic function in persons with SCI is pivotal and clinical examinations and laboratory evaluations to detect the presence of autonomic dysfunction and quantitate its severity are mandatory. Furthermore, previous studies demonstrated that there is an intimate relationship between the autonomic nervous system and sleep from anatomical, physiological, and neurochemical points of view. Although, even if previous epidemiological studies demonstrated that sleep problems are common in spinal cord injury (SCI), so far only limited polysomnographic (PSG) data are available. Finally, until now, circadian and state dependent autonomic regulation of blood pressure (BP), heart rate (HR) and body core temperature (BcT) were never assessed in SCI patients. Aim of the current study was to establish the association between the autonomic control of the cardiovascular function and thermoregulation, sleep parameters and increased cardiovascular risk in SCI patients.
Resumo:
Neuropathic pain is caused by long-term modifications of neuronal function in the peripheral nervous system, the spinal cord, and supraspinal areas. Although functional changes in the forebrain are thought to contribute to the development of persistent pain, their significance and precise subcellular nature remain unexplored. Using somatic and dendritic whole-cell patch-clamp recordings from neurons in the anterior cingulate cortex, we discovered that sciatic nerve injury caused an activity-dependent dysfunction of hyperpolarization-activated cyclic nucleotide-regulated (HCN) channels in the dendrites of layer 5 pyramidal neurons resulting in enhanced integration of excitatory postsynaptic inputs and increased neuronal firing. Specific activation of the serotonin receptor type 7 (5-HT7R) alleviated the lesion-induced pathology by increasing HCN channel function, restoring normal dendritic integration, and reducing mechanical pain hypersensitivity in nerve-injured animals in vivo. Thus, serotoninergic neuromodulation at the forebrain level can reverse the dendritic dysfunction induced by neuropathic pain and may represent a potential therapeutical target.
Resumo:
OBJECTIVE To evaluate changes over time in owner-perceived, weighted quality-of-life assessments in dogs with spinal cord injuries and determine whether scores were associated with underlying etiology or with veterinarian-assigned scores for severity of neurologic dysfunction. DESIGN Cohort study. ANIMALS 100 dogs with spinal cord injury. PROCEDURES Duration of dysfunction, modified Frankel neurologic injury score, and etiology were recorded. At initial and recheck (4- to 6-week) evaluations, owners were asked to identify 5 areas or activities they believed had the most influence on their dogs' quality of life, assess their dogs' current status in each area, and provide a weighting for the importance of each area; results were used to construct a weighted quality-of-life score. Owners were also asked to provide a quality-of-life score with a visual analog scale (VAS). RESULTS At initial and recheck evaluations, weighted quality-of-life scores were higher for ambulatory than for nonambulatory dogs. However, scores did not differ among groups when dogs were grouped on the basis of underlying etiology or duration of injury. Dogs with an increase in Frankel score between the initial and recheck evaluations had a significant increase in weighted quality-of-life score, whereas for dogs that did not have any change in Frankel score, initial and recheck weighted quality-of-life scores were not significantly different. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that owner-assigned, weighted quality-of-life scores for dogs with spinal cord injuries did not vary significantly on the basis of underlying etiology or duration of injury but were higher for ambulatory than for nonambulatory dogs.
Resumo:
La documentation scientifique fait état de la présence, chez l’adulte, de cellules souches et progénitrices neurales (CSPN) endogènes dans les zones sous-ventriculaire et sous-granulaire du cerveau ainsi que dans le gyrus denté de l’hippocampe. De plus, un postulat selon lequel il serait également possible de retrouver ce type de cellules dans la moelle épinière et le néocortex des mammifères adultes a été énoncé. L’encéphalopathie de Wernicke, un trouble neurologique grave toutefois réversible qui entraîne un dysfonctionnement, voire une défaillance du cerveau, est causée principalement par une carence importante en thiamine (CT). Des observations récentes laissent envisager que les facteurs en cause dans la prolifération et la différenciation des CSPN pourraient également jouer un rôle important lors d’un épisode de CT. L’hypothèse, selon laquelle l’identification de nouveaux métabolites entrant dans le mécanisme ou la séquence de réactions se soldant en une CT pourraient en faciliter la compréhension, a été émise au moyen d'une démarche en cours permettant d’établir le profil des modifications métaboliques qui surviennent en de telles situations. Cette approche a été utilisée pour constater les changements métaboliques survenus au niveau du foyer cérébral dans un modèle de rats déficients en thiamine (rats DT), particulièrement au niveau du thalamus et du colliculus inférieur (CI). La greffe de CSPN a quant à elle été envisagée afin d’apporter de nouvelles informations sur la participation des CSPN lors d’un épisode de CT et de déterminer les bénéfices thérapeutiques potentiels offerts par cette intervention. Les sujets de l’étude étaient répartis en quatre groupes expérimentaux : un premier groupe constitué de rats dont la CT était induite par la pyrithiamine (rats DTiP), un deuxième groupe constitué de rats-contrôles nourris ensemble (« pair-fed control rats » ou rats PFC) ainsi que deux groupes de rats ayant subi une greffe de CSPN, soit un groupe de rats DTiP greffés et un dernier groupe constitué de rats-contrôles (rats PFC) greffés. Les échantillons de foyers cérébraux (thalamus et CI) des quatre groupes de rats ont été prélevés et soumis à des analyses métabolomiques non ciblées ainsi qu’à une analyse visuelle par microscopie à balayage électronique (SEM). Une variété de métabolites-clés a été observée chez les groupes de rats déficients en thiamine (rats DTiP) en plus de plusieurs métabolites dont la documentation ne faisait pas mention. On a notamment constaté la présence d’acides biliaires, d’acide cynurénique et d’acide 1,9— diméthylurique dans le thalamus, alors que la présence de taurine et de carnosine a été observée dans le colliculus inférieur. L’étude a de plus démontré une possible implication des CSPN endogènes dans les foyers cérébraux du thalamus et du colliculus inférieur en identifiant les métabolites-clés ciblant les CSPN. Enfin, les analyses par SEM ont montré une amélioration notable des tissus à la suite de la greffe de CSPN. Ces constatations suggèrent que l’utilisation de CSPN pourrait s’avérer une avenue thérapeutique intéressante pour soulager la dégénérescence symptomatique liée à une grave carence en thiamine chez l’humain.
Resumo:
The aim of the study was firstly to document the acoustic parameters of voice using the Multidimensional Voice Program (MDVP, Kay Elemetrics) in a group of children with dysarthria subsequent to treatment for cerebellar tumour (CT). Then, secondly, compare the acoustic findings to perceptual voice characteristics as described by the GIRBAS (grade, instability, roughness, breathiness, asthenicity, strain). The assessments were performed on 29 voice samples; 9 cerebellar tumour participants with dysarthria, and 20 control participants. None of the control voices were rated as exhibiting any of the six parameters described by the GIRBAS, while 7 of the CT participants were noted to have at least a mild voice disorder. Roughness, instability, breathiness and asthenicity were all identified as voice characteristics in the CT voice samples. Acoustically, the CT voice samples differed significantly from the controls' voices on frequency and amplitude perturbation measures. Our findings confirmed voice dysfunction as a component of dysarthria in children treated for cerebellar tumour, and discussed the links between acoustic and perceptual descriptions. Copyright (C) 2004 S. Karger AG, Basel.
Resumo:
The present study examined 24 individuals with either complete or incomplete injuries to the cervical spinal cord through the use of standardized assessments of dysarthria and a perceptual rating scale. Perceptual assessment revealed predominantly prosodic and phonatory disturbances, while physical impairments were common in the respiratory and laryngeal subsystems of speech production. A reduction in intelligibility and speaking rate resulted in a diminished communicative effectiveness ratio for most participants. Individuals showed a high degree of variation, with no clear relationship between lesion type and impairments present. Further investigation is required to verify the physiological nature of the respiratory and laryngeal impairments found in the present investigation and to determine the relative contributions of these to the overall presentation of speech and voice post cervical spinal cord injury (CSI).
Resumo:
Objective - The purpose of this study was to assess cardiac function and cell damage in intrauterine growth-restricted (IUGR) fetuses across clinical Doppler stages of deterioration. Study Design - One hundred twenty appropriate-for-gestational-age and 81 IUGR fetuses were classified in stages 1/2/3 according umbilical artery present/absent/reversed end-diastolic blood flow, respectively. Cardiac function was assessed by modified-myocardial performance index, early-to-late diastolic filling ratios, cardiac output, and cord blood B-type natriuretic peptide; myocardial cell damage was assessed by heart fatty acid–binding protein, troponin-I, and high-sensitivity C-reactive protein. Results - Modified-myocardial performance index, blood B-type natriuretic peptide, and early-to-late diastolic filling ratios were increased in a stage-dependent manner in IUGR fetuses, compared with appropriate-for-gestational-age fetuses. Heart fatty acid–binding protein levels were higher in IUGR fetuses at stage 3, compared with control fetuses. Cardiac output, troponin-I, and high-sensitivity C-reactive protein did not increase in IUGR fetuses at any stage. Conclusion - IUGR fetuses showed signs of cardiac dysfunction from early stages. Cardiac dysfunction deteriorates further with the progression of fetal compromise, together with the appearance of biochemical signs of cell damage.
Resumo:
Spinal cord injury (SCI) is a devastating neurological disorder that affects thousands of people each year. Although in recent decades significant progress has been made in relation to understanding the molecular and cellular events underlying the nervous damage, spinal cord injury is still a highly disabling condition for which there is no curative therapy. People affected by spinal cord injuries manifested dysfunction or loss, temporary or permanent, of motor, sensory and / or autonomic functions depending on the spinal lesion damaged. Currently, the incidence rate of this type of injury is approximately 15-40 cases per million people worldwide. At the origin of these lesions are: road accidents, falls, interpersonal violence and the practice of sports. In this work we placed the hypothesis that HA is one of the component of the scar tissue formed after a compressive SCI, that it is likely synthetised by the perilesional glial cells and that it might support the permeation of the glial scar during the late phase of SCI. Nowadays, much focus is drawn on the recovery of CNS function, made impossible after SCI due to the high content of sulfated proteoglycans in the extracellular matrix. Counterbalancing the ratio between these proteoglycans and hyaluronic acid could be one of the experimental therapy to re-permeate the glial scar tissue formed after SCI, making possible axonal regrowth and functional recovery. Therefore, we established a model of spinal cord compression in mice and studied the glial scar tissue, particularly through the characterization of the expression of enzymes related to the metabolism of HA and the subsequent concentration thereof at different distances of the lesion epicenter. Our results show that the lesion induced in mice shows results similar to those produced in human lesions, in terms of histologic similarities and behavioral results. but these animals demonstrate an impressive spontaneous reorganization mechanism of the spinal cord tissue that occurs after injury and allows for partial recovery of the functions of the CNS. As regards the study of the glial scar, changes were recorded at the level of mRNA expression of enzymes metabolizing HA i.e., after injury there was a decreased expression of HA synthases 1-2 (HAS 1-2) and an increase of the expression HAS3 synthase mRNA, as well as the enzymes responsible for the HA catabolism, HYAL 1-2. But the amount of HA measured through the ELISA test was found unchanged after injury, it is not possible to explain this fact only with the change of expression of enzymes. At two weeks and in response to SCI, we found synthesized HA by reactive astrocytes and probably by others like microglial cells as it was advanced by the HA/GFAP+ and HA/IBA1+ cells co-location.
Resumo:
To estimate the impact of aging and diabetes on insulin sensitivity, beta-cell function, adipocytokines, and incretin production. Hyperglycemic clamps, arginine tests and meal tolerance tests were performed in 50 non-obese subjects to measure insulin sensitivity (IS) and insulin secretion as well as plasma levels of glucagon, GLP-1 and GIP. Patients with diabetes and healthy control subjects were divided into the following groups: middle-aged type 2 diabetes (MA-DM), aged Type 2 diabetes (A-DM) and middle-aged or aged subjects with normal glucose tolerance (MA-NGT or A-NGT). IS, as determined by the homeostasis model assessment, glucose infusion rate, and oral glucose insulin sensitivity, was reduced in the aged and DM groups compared with MA-NGT, but it was similar in the MA-DM and A-DM groups. Insulinogenic index, first and second phase insulin secretion and the disposition indices, but not insulin response to arginine, were reduced in the aged and DM groups. Postprandial glucagon production was higher in MA-DM compared to MA-NGT. Whereas the GLP-1 production was reduced in A-DM, no differences between groups were observed in GIP production. In non-obese subjects, diabetes and aging impair insulin sensitivity. Insulin production is reduced by aging, and diabetes exacerbates this condition. Aging associated defects superimposed diabetic physiopathology, particularly regarding GLP-1 production. On the other hand, the glucose-independent secretion of insulin was preserved. Knowledge of the complex relationship between aging and diabetes could support the development of physiopathological and pharmacological based therapies.