909 resultados para Vitreous Silica


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel method has been developed to synthesize mesoporous silica spheres using commercial silica colloids (SNOWTEX) as precursors and electrolytes (ammonium nitrate and sodium chloride) as destabilizers. Crosslinked polyacrylamide hydrogel was used as a temporary barrier to obtain dispersible spherical mesoporous silica particles. The influences of synthesis conditions including solution composition and calcination temperature on the formation of the mesoporous silica particles were systematically investigated. The structure and morphology of the mesoporous silica particles were characterized via scanning electron microscopy (SEM) and N2 sorption technique. Mesoporous silica particles with particle diameters ranging from 0.5 to 1.6 μm were produced whilst the BET surface area was in the range of 31-123 m2 g-1. Their pore size could be adjusted from 14.1 to 28.8 nm by increasing the starting particle diameter from 20-30 nm up to 70-100 nm. A simple and cost effective method is reported that should open up new opportunities for the synthesis of scalable host materials with controllable structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isolated and purified organosolv eucalyptus wood lignin was depolymerized at different temperatures with and without mesostructured silica catalysts (i.e., SBA-15, MCM-41, ZrO2-SBA-15 and ZrO2-MCM-41). It was found that at 300 oC for 1 h with a solid/liquid ratio of 0.0175/1 (w/v), the SBA-15 catalyst with high acidity gave the highest syringol yield of 23.0% in a methanol/water mixture (50/50, wt/wt). Doping with ZrO2 over these catalysts did not increase syringol yield, but increased the total amount of solid residue. Gas chromatography-mass spectrometry (GC-MS) also identified other main phenolic compounds such as 1-(4-hydroxy-3,5-dimethoxyphenyl)-ethanone, 1,2-benzenediol, and 4-hydroxy-3,5-dimethoxy-benzaldehyde. Analysis of the lignin residues with Fourier transform-Infrared spectroscopy (FT-IR) indicated decreases in the absorption bands intensities of OH group, C-O stretching of syringyl ring and aromatic C-H deformation of syringol unit, and an increase in band intensities associated with the guaiacyl ring, confirming the type of products formed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigated the influence of nano-silica (NS) on the mechanical and transport properties of lightweight concrete (LWC). The resistance of LWC to water and chloride ions penetration was enhanced despite strength marginally increased. Water penetration depth, moisture sorptivity, chloride migration and diffusion coefficient was reduced by 23% and 49%, 23% and 10%, 5% and 0%, 22% and 12% compared to the two reference LWC mixes (pure cement and 60% slag blended cement), respectively with 1% NS. Such improvements were attributed to more compact microstructures because the micropore system was refined and the interface between aggregates and paste was enhanced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multifunctional bioactive materials with the ability to stimulate osteogenesis and angiogenesis of stem cells play an important role in the regeneration of bone defects. However, how to develop such biomaterials remains a significant challenge. In this study, we prepared mesoporous silica nanospheres (MSNs) with uniform sphere size (∼90 nm) and mesopores (∼2.7 nm), which could release silicon ions (Si) to stimulate the osteogenic differentiation of human bone marrow stromal cells (hBMSCs) via activating their ALP activity, bone-related gene and protein (OCN, RUNX2 and OPN) expression. Hypoxia-inducing therapeutic drug, dimethyloxaloylglycine (DMOG), was effectively loaded in the mesopores of MSNs (D-MSNs). The sustained release of DMOG from D-MSNs could stabilize HIF-1α and further stimulated the angiogenic differentiation of hBMSCs as indicated by the enhanced VEGF secretion and protein expression. Our study revealed that D-MSNs could combine the stimulatory effect on both osteogenic and angiogenic activity of hBMSCs. The potential mechanism of D-MSN-stimulated osteogenesis and angiogenesis was further elucidated by the supplementation of cell culture medium with pure Si ions and DMOG. Considering the easy handling characteristics of nanospheres, the prepared D-MSNs may be applied in the forms of injectable spheres for minimally invasive surgery, or MSNs/polymer composite scaffolds for bone defect repair. The concept of delivering both stimulatory ions and functional drugs may offer a new strategy to construct a multifunctional biomaterial system for bone tissue regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An intrinsic exposed core optical fiber sensor (IECOFS) made from fused silica was used to monitor the crystallization of calcium carbonate (CaCO3) and CaCO3/calcium sulfate (CaSO4) composite at 100 and 120 °C in the absence and presence of low-molar-mass (Mn ≤ 2000) poly(acrylic acid) (PAA) with different end groups. The IECOFS responded only to deposition and growth processes on the fiber surface rather than changes occurring in the bulk of the solution. Hexyl isobutyrate-terminated PAA (Mn = 1400) and hexadecyl isobutyrate-terminated PAA (Mn = 1700) were the most effective species in preventing CaCO3 deposition. Phase transformation from vaterite to aragonite/calcite decreased with increasing hydrophobicity of the PAA end group. Low-molar-mass PAA at 10 ppm showed very significant inhibition of CaCO3/CaSO4 composite formation for all end groups investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chain length of the surfactant and the solvent composition are two of the factors that determine whether the lamellar or the hexagonal form of mesoporous SiO2 (or ZrO2) is formed by the neutral amine route; a lamellar-hexagonal transformation occurs on removal of the amine from the former.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of mesoporous silica nanospheres (MSNs) loaded with drugs/growth factors to induce osteogenic differentiation of stem cells has been trialed by a number of researchers recently. However, limitations such as high cost, complex fabrication and unintended side effects from supraphysiological concentrations of the drugs/growth factors represent major obstacles to any potential clinical application in the near term. In this study we reported an in situ one-pot synthesis strategy of MSNs doped with hypoxia-inducing copper ions and systematically evaluated the nanospheres by in vitro biological assessments. The Cu-containing mesoporous silica nanospheres (Cu-MSNs) had uniform spherical morphology (∼100 nm), ordered mesoporous channels (∼2 nm) and homogeneous Cu distribution. Cu-MSNs demonstrated sustained release of both silicon (Si) and Cu ions and controlled degradability. The Cu-MSNs were phagocytized by immune cells and appeared to modulate a favorable immune environment by initiating proper pro-inflammatory cytokines, inducing osteogenic/angiogenic factors and suppressing osteoclastogenic factors by the immune cells. The immune microenvironment induced by the Cu-MSNs led to robust osteogenic differentiation of bone mesenchymal stem cells (BMSCs) via the activation of Oncostation M (OSM) pathway. These results suggest that the novel Cu-MSNs could be used as an immunomodulatory agent with osteostimulatory capacity for bone regeneration/therapy application. Statement of significance In order to stimulate both osteogenesis and angiogenesis of stem cells for further bone regeneration, a new kind of hypoxia-inducing copper doped mesoporous silica nanospheres (Cu-MSNs) were prepared via one-pot synthesis. Biological assessments under immune environment which better reflect the in vivo response revealed that the nanospheres possessed osteostimulatory capacity and had potential as immunomodulatory agent for bone regeneration/therapy application. The strategy of introducing controllable amount of therapeutic ions instead of loading expensive drugs/growth factors in mesoporous silica nanosphere provides new options for bioactive nanomaterial functionalization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silica is a prominently utilized heterogeneous metal catalyst support. Functionalization of the silica with poly(ether imine) based dendritic phosphine ligand was conducted, in order to assess the efficacy of the dendritic phosphine in reactions facilitated by a silica supported metal catalyst. The phosphinated poly(ether imine) (PETIM) dendritic ligand was bound covalently to the functionalized silica. For this purpose, the phosphinated dendritic ligand containing an amine at the focal point was synthesized initially. Complexation of the dendritic phosphine functionalized silica with Pd(COD)Cl-2 yielded Pd(II) complex, which was reduced subsequently to Pd(0), by conditioning with EtOH. The Pd metal nanoparticle thus formed was characterized by physical methods, and the spherical nanoparticles were found to have >85% size distribution between 2 nm and 4 nm. The metal nanoparticle was tested as a hydrogenation catalyst of olefins. The catalyst could be recovered and recycled more than 10 times, without a loss in the catalytic efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Develops a new technology for the delivery of biocides against agricultural pests, with biocides contained within silica nanocapsules which are themselves protected by an outer envelope, capable of being selectively broken down by the target pest. Will reduce the amount of biocide escaping into the environment, prolong the life of the biocide, reduce biocide usage rates, and reduce undesirable effects on non-target organisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation of the problem of controlled doping of amorphous chalcogenide semiconductors utilizing a Bridgman anvil high pressure technique, has been undertaken. Bulk amorphous semiconducting materials (GeSe3.5)100-x doped with M = Bi (x = 2, 4, 10) and M = Sb (x = 10) respectively are studied up to a pressure of 100 kbar down to liquid nitrogen temperature, with a view to observe the impurity induced modifications. Measurement of the electrical conductivity of the doped samples under quasi-hydrostatic pressure reveals that the pressure induced effects in lightly doped (2 at % Bi) and heavily doped (x = 4, 10) semiconductors are markedly different. The pressure effects in Sb-doped semiconductors are quite different from those in Bi-doped material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rice husk ash (about 95% silica) with known physical and chemical characteristics has been reacted with lime and water. The setting process for a lime-excess and a lime-deficient mixture has been investigated. The product of the reaction has been shown to be a calcium silicate hydrate, C-S-H(I)+ by a combination of thermal analysis, XRD and electron microscopy. Formation of C-S-H(I) accounts for the strength of lime-rice husk ash cement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal decomposition characteristics of rice husk have been investigated by dynamic thermoanalytical techniques: DTA, TG, DTG and isothermal heating. The observed thermal behaviour is explained on the basis of a superposition of the decomposition of cellulose and lignin, which are the major organic constituents of rice husk. Morphological features of silica in husk as well as the ash are examined by scanning electron microscopy. Silica in the residual ash has been characterised by X-ray diffraction and infrared spectroscopy. Controlled thermal decomposition of rice husk has been shown to be a convenient method for the liberation of silica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this proof-of-concept study, an agricultural biocide (imidacloprid) was effectively loaded into the mesoporous silica nanoparticles (MSNs) with different pore sizes, morphologies and mesoporous structures for termite control. This resulted in nanoparticles with a large surface area, tunable pore diameter and small particle size, which are ideal carriers for adsorption and controlled release of imidacloprid. The effect of pore size, surface area and mesoporous structure on uptake and release of imidacloprid was systematically studied. It was found that the adsorption amount and release profile of imidacloprid were dependent on the type of mesoporous structure and surface area of particles. Specifically, MCM-48 type mesoporous silica nanoparticles with a three dimensional (3D) open network structure and high surface area displayed the highest adsorption capacity compared to other types of silica nanoparticles. Release of imidacloprid from these nanoparticles was found to be controlled over 48 hours. Finally, in vivo laboratory testing on termite control proved the efficacy of these nanoparticles as delivery carriers for biopesticides. We believe that the present study will contribute to the design of more effective controlled and targeted delivery for other biomolecules.