854 resultados para Visually Impaired Persons.
Resumo:
Purpose: To examine the use of real-time, generic edge detection, image processing techniques to enhance the television viewing of the visually impaired. Design: Prospective, clinical experimental study. Method: One hundred and two sequential visually impaired (average age 73.8 ± 14.8 years; 59% female) in a single center optimized a dynamic television image with respect to edge detection filter (Prewitt, Sobel, or the two combined), color (red, green, blue, or white), and intensity (one to 15 times) of the overlaid edges. They then rated the original television footage compared with a black-and-white image displaying the edges detected and the original television image with the detected edges overlaid in the chosen color and at the intensity selected. Footage of news, an advertisement, and the end of program credits were subjectively assessed in a random order. Results: A Prewitt filter was preferred (44%) compared with the Sobel filter (27%) or a combination of the two (28%). Green and white were equally popular for displaying the detected edges (32%), with blue (22%) and red (14%) less so. The average preferred edge intensity was 3.5 ± 1.7 times. The image-enhanced television was significantly preferred to the original (P < .001), which in turn was preferred to viewing the detected edges alone (P < .001) for each of the footage clips. Preference was not dependent on the condition causing visual impairment. Seventy percent were definitely willing to buy a set-top box that could achieve these effects for a reasonable price. Conclusions: Simple generic edge detection image enhancement options can be performed on television in real-time and significantly enhance the viewing of the visually impaired. © 2007 Elsevier Inc. All rights reserved.
Resumo:
Background: Prescribing magnification is typically based on distance or near visual acuity. this presumes a constant minimum angle of visual resolution with working distance and therefore enlargement of an object moved to a shorter working distance (relative distance enlargement). this study examines this premise in a visually impaired population. methods: distance letter visual acuity was measured prospectively for 380 low vision patients (distance visual acuity between 0.3 and 2.1 logmar) over the age of 57 years, along with near word visual acuity at an appropriate distance for near lens additions from +4 d to +20 D. demographic information, the disease causing low vision, contrast sensitivity, visual field and psychological status were also recorded. results: distance letter acuity was significantly related to (r = 0.84) but on average 0.1 ± 0.2 logmar better (1 ± 2 lines on a logmar chart) than near word acuity at 25 cm with a +4 d lens addition. in 39. 8 per cent of patients, near word acuity was more than 0.1 logmar worse than distance letter acuity. in 11.0 per cent of subjects, near visual acuity was more than 0.1 logmar better than distance letter acuity. the group with near word acuity worse than distance letter acuity also had lower contrast sensitivity. the group with near word acuity better than distance letter acuity was less likely to have age-Related macular degeneration. smaller print size could be read by reducing working distance (achieved by using higher near lens additions) in 86. 1 per cent, although not by as much as predicted by geometric progression in 14. 5 per cent. discussion: although distance letter and near word acuity are highly related, they are on average 1 logmar line different and this varies significantly between individuals. near word acuity did not increase linearly with relative distance enlargement in approximately one in seven visually impaired, suggesting that the measurement of visual resolution over a range of working distances will assist appropriate prescribing of magnification aids.
Resumo:
AIM To develop a short, enhanced functional ability Quality of Vision (faVIQ) instrument based on previous questionnaires employing comprehensive modern statistical techniques to ensure the use of an appropriate response scale, items and scoring of the visual related difficulties experienced by patients with visual impairment. METHODS Items in current quality-of-life questionnaires for the visually impaired were refined by a multi-professional group and visually impaired focus groups. The resulting 76 items were completed by 293 visually impaired patients with stable vision on two occasions separated by a month. The faVIQ scores of 75 patients with no ocular pathology were compared to 75 age and gender matched patients with visual im pairm ent. RESULTS Rasch analysis reduced the faVIQ items to 27. Correlation to standard visual metrics was moderate (r=0.32-0.46) and to the NEI-VFQ was 0.48. The faVIQ was able to clearly discriminate between age and gender matched populations with no ocular pathology and visual impairment with an index of 0.983 and 95% sensitivity and 95% specificity using a cut off of 29. CONCLUSION The faVIQ allows sensitive assessm ent of quality-of-life in the visually im paired and should support studies which evaluate the effectiveness of low vision rehabilitation services. © Copyright International Journal of Ophthalmology Press.
Resumo:
Magnification can be provided to assist those with visual impairment to make the best use of remaining vision. Electronic transverse magnification of an object was first conceived for use in low vision in the late 1950s, but has developed slowly and is not extensively prescribed because of its relatively high cost and lack of portability. Electronic devices providing transverse magnification have been termed closed-circuit televisions (CCTVs) because of the direct cable link between the camera imaging system and monitor viewing system, but this description generally refers to surveillance devices and does not indicate the provision of features such as magnification and contrast enhancement. Therefore, the term Electronic Vision Enhancement Systems (EVES) is proposed to better distinguish and describe such devices. This paper reviews current knowledge on EVES for the visually impaired in terms of: classification; hardware and software (development of technology, magnification and field-of-view, contrast and image enhancement); user aspects (users and usage, reading speed and duration, and training); and potential future development of EVES. © 2003 The College of Optometrists.
Resumo:
PURPOSE: To examine whether objective performance of near tasks is improved with various electronic vision enhancement systems (EVES) compared with the subject's own optical magnifier. DESIGN: Experimental study, randomized, within-patient design. METHODS: This was a prospective study, conducted in a hospital ophthalmology low-vision clinic. The patient population comprised 70 sequential visually impaired subjects. The magnifying devices examined were: patient's optimum optical magnifier; magnification and field-of-view matched mouse EVES with monitor or head-mounted display (HMD) viewing; and stand EVES with monitor viewing. The tasks performed were: reading speed and acuity; time taken to track from one column of print to the next; follow a route map, and locate a specific feature; and identification of specific information from a medicine label. RESULTS: Mouse EVES with HMD viewing caused lower reading speeds than stand EVES with monitor viewing (F = 38.7, P < .001). Reading with the optical magnifier was slower than with the mouse or stand EVES with monitor viewing at smaller print sizes (P < .05). The column location task was faster with the optical magnifier than with any of the EVES (F = 10.3, P < .001). The map tracking and medicine label identification task was slower with the mouse EVES with HMD viewing than with the other magnifiers (P < .01). Previous EVES experience had no effect on task performance (P > .05), but subjects with previous optical magnifier experience were significantly slower at performing the medicine label identification task with all of the EVES (P < .05). CONCLUSIONS: Although EVES provide objective benefits to the visually impaired in reading speed and acuity, together with some specific near tasks, some can be performed just as fast using optical magnification. © 2003 by Elsevier Inc. All rights reserved.
Resumo:
There are around 285 million visually impaired people worldwide, and around 370,000 people are registered as blind or partially sighted in the UK. Ongoing advances in information technology (IT) are increasing the scope for IT-based mobile assistive technologies to facilitate the independence, safety, and improved quality of life of the visually impaired. Research is being directed at making mobile phones and other handheld devices accessible via our haptic (touch) and audio sensory channels. We review research and innovation within the field of mobile assistive technology for the visually impaired and, in so doing, highlight the need for successful collaboration between clinical expertise, computer science, and domain users to realize fully the potential benefits of such technologies. We initially reflect on research that has been conducted to make mobile phones more accessible to people with vision loss. We then discuss innovative assistive applications designed for the visually impaired that are either delivered via mainstream devices and can be used while in motion (e.g., mobile phones) or are embedded within an environment that may be in motion (e.g., public transport) or within which the user may be in motion (e.g., smart homes). © 2013 Elsevier Inc.
Resumo:
Traditional Optics has provided ways to compensate some common visual limitations (up to second order visual impairments) through spectacles or contact lenses. Recent developments in wavefront science make it possible to obtain an accurate model of the Point Spread Function (PSF) of the human eye. Through what is known as the "Wavefront Aberration Function" of the human eye, exact knowledge of the optical aberration of the human eye is possible, allowing a mathematical model of the PSF to be obtained. This model could be used to pre-compensate (inverse-filter) the images displayed on computer screens in order to counter the distortion in the user's eye. This project takes advantage of the fact that the wavefront aberration function, commonly expressed as a Zernike polynomial, can be generated from the ophthalmic prescription used to fit spectacles to a person. This allows the pre-compensation, or onscreen deblurring, to be done for various visual impairments, up to second order (commonly known as myopia, hyperopia, or astigmatism). The technique proposed towards that goal and results obtained using a lens, for which the PSF is known, that is introduced into the visual path of subjects without visual impairment will be presented. In addition to substituting the effect of spectacles or contact lenses in correcting the loworder visual limitations of the viewer, the significance of this approach is that it has the potential to address higher-order abnormalities in the eye, currently not correctable by simple means.
Resumo:
This paper describes the latest accomplishments on the current research that is based on the master’s thesis “Ein System zur Erstellung taktiler Karten für blinde und sehbehinderte Menschen” (German for “A system creating tactile maps for blind and visually impaired people”) (Hänßgen, 2012). The system consists of two parts. The first part is new software especially designed and developed for creating tactile maps addressing the needs of blind and visually impaired people on tactile information. The second is an embossing device based on a modified CNC (computer numerical control) router. By using OpenStreetMap-data, the developed system is capable of embossing tactile maps into Braille paper and writing film.
Resumo:
In this thesis, an image enhancement application is developed for low-vision patients when they use iPhones to see images/watch videos. The thesis has two contributions. The first contribution is the new image enhancement algorithm which combines human vision features. The new image enhancement algorithm is modified from a wavelet transform based image enhancement algorithm developed by Dr. Jinshan Tang. Different from the original algorithm, the new image enhancement algorithm combines human visual feature into the algorithm and thus can make the new algorithm more effective. Experimental simulation results show that the proposed algorithm has better visual results than the algorithm without combining visual features. The second contribution of this thesis is the development of a mobile image enhancement application. In this application, users with low-vision can see clearer images on an iPhone which is installed with the application I have developed.
Resumo:
Fino a pochi anni fa, usare i trasporti pubblici poteva essere fonte di confusione e richiedere la comprensione del sistema dei trasporti locali. Più tardi, con la diffusione di dispositivi con localizzazione GPS, reti dati cellulare e Google Maps (inizialmente Google Transit), tutto è cambiato, rendendo possibile la pianificazione di un viaggio mentre si è fuori casa. Nonostante Google Maps disponga di indicazioni stradali più o meno in tutto il mondo e mostri molte informazioni, alcune funzionalità, come l’integrazione degli orari in tempo reale, non sono disponibili in tutte le città, ma sono basate su accordi con le agenzie dei trasporti locali. GoGoBus è un’applicazione Android per l’ausilio al trasporto nella città di Bologna. Combinando diversi servizi, GoGoBus si rivolge a svariati tipi di utilizzatori: offre la pianificazione per i meno pratici del sistema e coloro che usano i trasporti pubblici raramente, dispone di orari in tempo reale per chi usa i mezzi frequentemente, e in più traccia la posizione dell’autobus, ha un supporto vocale e un’interfaccia semplice per persone con disabilità. Progettata appositamente per ipovedenti, l’aspetto più innovativo dell’applicazione è il suo supporto durante il percorso sull’autobus, integrato alla pianificazione del tragitto e agli orari aggiornati in tempo reale. Il sistema traccia la posizione dell’autobus attraverso il GPS del dispositivo mobile, la cui posizione è usata sia per riconoscere quando una fermata viene superata, sia per mostrare informazioni utili come la distanza dalla prossima fermata, il numero di fermate e i minuti rimanenti prima di scendere, e soprattutto notificare l’utente quando deve scendere. L’idea dietro GoGoBus è incrementare la fruibilità dei trasporti pubblici per non vedenti, ma anche per persone che li usano di rado, aumentando ampiamente la loro indipendenza, allo stesso tempo migliorando la qualità del servizio per chi usa i mezzi quotidianamente.
Resumo:
ABSTRACT: Educational policies in Brazil, in the past few years, have recommended the inclusion of visually impaired students in mainstream schools. Considering Vygotsky’s (2000;2008) cultural historical theory of learning and development; Maturana’s (2002) and Tomasello’s (2003) studies on social cognition, this article aims at analyzing the way two students conceive the process of inclusion in an English language classroom. An interview with the students made it possible to observe the positive impact that didactic strategies and the teacher´s attitudes had on the way these students faced learning and the foreign language. KEY WORDS: foreign language learning – blind students - affectivity
Resumo:
Background: This study investigated the effects of experimentally induced visual impairment, headlamp glare and clothing on pedestrian visibility. Methods: 28 young adults (M=27.6±4.7 yrs) drove around a closed road circuit at night while pedestrians walked in place at the roadside. Pedestrians wore either black clothing, black clothing with a rectangular vest consisting of 1325 cm2 of retroreflective tape, or the same amount of tape positioned on the extremities in a configuration that conveyed biological motion (“biomotion”). Visual impairment was induced by goggles containing either blurring lenses, simulated cataracts, or clear lenses; visual acuity for the cataract and blurred lens conditions was matched. Drivers pressed a response pad when they first recognized that a pedestrian was present. Sixteen participants drove around the circuit in the presence of headlamp glare while twelve drove without glare. Results: Visual impairment, headlamp glare and pedestrian clothing all significantly affected drivers’ ability to recognize pedestrians (p<0.05). The simulated cataracts were more disruptive than blur, even though acuity was matched across the two manipulations. Pedestrians were recognized more often and at longer distances when they wore “biomotion” clothing than either the vest or black clothing, even in the presence of visual impairment and glare. Conclusions: Drivers’ ability to see and respond to pedestrians at night is degraded by modest visual impairments even when vision meets driver licensing requirements; glare further exacerbates these effects. Clothing that includes retroreflective tape in a biological motion configuration is relatively robust to visual impairment and glare.
Resumo:
The article presents a study which investigated the reasons why advice related to the removal of mats or rags by older people with visual impairments had a low rate of acceptance. The researchers speculated that it may have been due to older people's need to maintain a sense of control and autonomy and to arrange their environments in a way that they decided or a belief that the recommended modification would not reduce the risk of falling. A telephone survey of subsample of the participants was conducted in the Visually Impaired Persons (VIP) Trial. All 30 interviewees had rugs or mats in their homes. Of the 30 participants, 20 had moved the rugs or mats as a result of recommendations, and 10 had not.
Resumo:
Purpose: Over 40% of the permanent population of Norfolk Island possesses a unique genetic admixture dating to Pitcairn Island in the late 18 th century, with descendents having varying degrees of combined Polynesian and European ancestry. We conducted a population-based study to determine the prevalence and causes of blindness and low vision on Norfolk Island. Methods: All permanent residents of Norfolk Island aged ≥ 15 years were invited to participate. Participants completed a structured questionnaire/interview and underwent a comprehensive ophthalmic examination including slit-lamp biomicroscopy. Results: We recruited 781 people aged ≥ 15, equal to 62% of the permanent population, 44% of whom could trace their ancestry to Pitcairn Island. No one was bilaterally blind. Prevalence of unilateral blindness (visual acuity [VA] < 6/60) in those aged ≥ 40 was 1.5%. Blindness was more common in females (P=0.049) and less common in people with Pitcairn Island ancestry (P<0.001). The most common causes of unilateral blindness were age-related macular degeneration (AMD), amblyopia, and glaucoma. Five people had low vision (Best-Corrected VA < 6/18 in better eye), with 4 (80%) due to AMD. People with Pitcairn Island ancestry had a lower prevalence of AMD (P<0.001) but a similar prevalence of glaucoma to those without Pitcairn Island ancestry. Conclusions: The prevalence of blindness and visual impairment in this isolated Australian territory is low, especially amongst those with Pitcairn Island ancestry. AMD was the most common cause of unilateral blindness and low vision. The distribution of chronic ocular diseases on Norfolk Island is similar to mainland Australian estimates.
Resumo:
The study examines various uses of computer technology in acquisition of information for visually impaired people. For this study 29 visually impaired persons took part in a survey about their experiences concerning acquisition of infomation and use of computers, especially with a screen magnification program, a speech synthesizer and a braille display. According to the responses, the evolution of computer technology offers an important possibility for visually impaired people to cope with everyday activities and interacting with the environment. Nevertheless, the functionality of assistive technology needs further development to become more usable and versatile. Since the challenges of independent observation of environment were emphasized in the survey, the study led into developing a portable text vision system called Tekstinäkö. Contrary to typical stand-alone applications, Tekstinäkö system was constructed by combining devices and programs that are readily available on consumer market. As the system operates, pictures are taken by a digital camera and instantly transmitted to a text recognition program in a laptop computer that talks out loud the text using a speech synthesizer. Visually impaired test users described that even unsure interpretations of the texts in the environment given by Tekstinäkö system are at least a welcome addition to complete perception of the environment. It became clear that even with a modest development work it is possible to bring new, useful and valuable methods to everyday life of disabled people. Unconventional production process of the system appeared to be efficient as well. Achieved results and the proposed working model offer one suggestion for giving enough attention to easily overlooked needs of the people with special abilities. ACM Computing Classification System (1998): K.4.2 Social Issues: Assistive technologies for persons with disabilities I.4.9 Image processing and computer vision: Applications Keywords: Visually impaired, computer-assisted, information, acquisition, assistive technology, computer, screen magnification program, speech synthesizer, braille display, survey, testing, text recognition, camera, text, perception, picture, environment, trasportation, guidance, independence, vision, disabled, blind, speech, synthesizer, braille, software engineering, programming, program, system, freeware, shareware, open source, Tekstinäkö, text vision, TopOCR, Autohotkey, computer engineering, computer science