983 resultados para Visual programming languages
Resumo:
In this work an image pre-processing module has been developed to extract quantitative information from plantation images with various degrees of infestation. Four filters comprise this module: the first one acts on smoothness of the image, the second one removes image background enhancing plants leaves, the third filter removes isolated dots not removed by the previous filter, and the fourth one is used to highlight leaves' edges. At first the filters were tested with MATLAB, for a quick visual feedback of the filters' behavior. Then the filters were implemented in the C programming language. At last, the module as been coded in VHDL for the implementation on a Stratix II family FPGA. Tests were run and the results are shown in this paper. © 2008 Springer-Verlag Berlin Heidelberg.
Resumo:
The present article describes the challenges programming apprentices face and identifies the elements and processes that set them apart from experienced programmers. And also explains why a conventional programming languages teaching approach fails to map the programming mental model. The purpose of this discussion is to benefit from ideas and cognitive philosophies to be embedded in programming learning tools. Cognitive components are modeled as elements to be handled by the apprentices in tutoring systems while performing a programming task. In this process a mental level solution (the mental model of the program) and an implementation level solution (the program) are created. The mapping between these representations is a path followed by the student explicitly in this approach. © 2011 IEEE.
Resumo:
La crescente disponibilità di dispositivi meccanici e -soprattutto - elettronici le cui performance aumentano mentre il loro costo diminuisce, ha permesso al campo della robotica di compiere notevoli progressi. Tali progressi non sono stati fatti unicamente per ciò che riguarda la robotica per uso industriale, nelle catene di montaggio per esempio, ma anche per quella branca della robotica che comprende i robot autonomi domestici. Questi sistemi autonomi stanno diventando, per i suddetti motivi, sempre più pervasivi, ovvero sono immersi nello stesso ambiente nel quale vivono gli essere umani, e interagiscono con questi in maniera proattiva. Essi stanno compiendo quindi lo stesso percorso che hanno attraversato i personal computer all'incirca 30 anni fa, passando dall'essere costosi ed ingombranti mainframe a disposizione unicamente di enti di ricerca ed università, ad essere presenti all'interno di ogni abitazione, per un utilizzo non solo professionale ma anche di assistenza alle attività quotidiane o anche di intrattenimento. Per questi motivi la robotica è un campo dell'Information Technology che interessa sempre più tutti i tipi di programmatori software. Questa tesi analizza per prima cosa gli aspetti salienti della programmazione di controllori per robot autonomi (ovvero senza essere guidati da un utente), quindi, come l'approccio basato su agenti sia appropriato per la programmazione di questi sistemi. In particolare si mostrerà come un approccio ad agenti, utilizzando il linguaggio di programmazione Jason e quindi l'architettura BDI, sia una scelta significativa, dal momento che il modello sottostante a questo tipo di linguaggio è basato sul ragionamento pratico degli esseri umani (Human Practical Reasoning) e quindi è adatto alla implementazione di sistemi che agiscono in maniera autonoma. Dato che le possibilità di utilizzare un vero e proprio sistema autonomo per poter testare i controllori sono ridotte, per motivi pratici, economici e temporali, mostreremo come è facile e performante arrivare in maniera rapida ad un primo prototipo del robot tramite l'utilizzo del simulatore commerciale Webots. Il contributo portato da questa tesi include la possibilità di poter programmare un robot in maniera modulare e rapida per mezzo di poche linee di codice, in modo tale che l'aumento delle funzionalità di questo risulti un collo di bottiglia, come si verifica nella programmazione di questi sistemi tramite i classici linguaggi di programmazione imperativi. L'organizzazione di questa tesi prevede un capitolo di background nel quale vengono riportare le basi della robotica, della sua programmazione e degli strumenti atti allo scopo, un capitolo che riporta le nozioni di programmazione ad agenti, tramite il linguaggio Jason -quindi l'architettura BDI - e perché tale approccio è adatto alla programmazione di sistemi di controllo per la robotica. Successivamente viene presentata quella che è la struttura completa del nostro ambiente di lavoro software che comprende l'ambiente ad agenti e il simulatore, quindi nel successivo capitolo vengono mostrate quelle che sono le esplorazioni effettuate utilizzando Jason e un approccio classico (per mezzo di linguaggi classici), attraverso diversi casi di studio di crescente complessità; dopodiché, verrà effettuata una valutazione tra i due approcci analizzando i problemi e i vantaggi che comportano questi. Infine, la tesi terminerà con un capitolo di conclusioni e di riflessioni sulle possibili estensioni e lavori futuri.
Resumo:
After almost 10 years from “The Free Lunch Is Over” article, where the need to parallelize programs started to be a real and mainstream issue, a lot of stuffs did happened: • Processor manufacturers are reaching the physical limits with most of their approaches to boosting CPU performance, and are instead turning to hyperthreading and multicore architectures; • Applications are increasingly need to support concurrency; • Programming languages and systems are increasingly forced to deal well with concurrency. This thesis is an attempt to propose an overview of a paradigm that aims to properly abstract the problem of propagating data changes: Reactive Programming (RP). This paradigm proposes an asynchronous non-blocking approach to concurrency and computations, abstracting from the low-level concurrency mechanisms.
Resumo:
Grammars for programming languages are traditionally specified statically. They are hard to compose and reuse due to ambiguities that inevitably arise. PetitParser combines ideas from scannerless parsing, parser combinators, parsing expression grammars and packrat parsers to model grammars and parsers as objects that can be reconfigured dynamically. Through examples and benchmarks we demonstrate that dynamic grammars are not only flexible but highly practical.
Resumo:
Context-dependent behavior is becoming increasingly important for a wide range of application domains, from pervasive computing to common business applications. Unfortunately, mainstream programming languages do not provide mechanisms that enable software entities to adapt their behavior dynamically to the current execution context. This leads developers to adopt convoluted designs to achieve the necessary runtime flexibility. We propose a new programming technique called Context-oriented Programming (COP) which addresses this problem. COP treats context explicitly, and provides mechanisms to dynamically adapt behavior in reaction to changes in context, even after system deployment at runtime. In this paper we lay the foundations of COP, show how dynamic layer activation enables multi-dimensional dispatch, illustrate the application of COP by examples in several language extensions, and demonstrate that COP is largely independent of other commitments to programming style.
Resumo:
Studying independence of goals has proven very useful in the context of logic programming. In particular, it has provided a formal basis for powerful automatic parallelization tools, since independence ensures that two goals may be evaluated in parallel while preserving correctness and eciency. We extend the concept of independence to constraint logic programs (CLP) and prove that it also ensures the correctness and eciency of the parallel evaluation of independent goals. Independence for CLP languages is more complex than for logic programming as search space preservation is necessary but no longer sucient for ensuring correctness and eciency. Two additional issues arise. The rst is that the cost of constraint solving may depend upon the order constraints are encountered. The second is the need to handle dynamic scheduling. We clarify these issues by proposing various types of search independence and constraint solver independence, and show how they can be combined to allow dierent optimizations, from parallelism to intelligent backtracking. Sucient conditions for independence which can be evaluated \a priori" at run-time are also proposed. Our study also yields new insights into independence in logic programming languages. In particular, we show that search space preservation is not only a sucient but also a necessary condition for ensuring correctness and eciency of parallel execution.
Resumo:
We report on a detailed study of the application and effectiveness of program analysis based on abstract interpretation to automatic program parallelization. We study the case of parallelizing logic programs using the notion of strict independence. We first propose and prove correct a methodology for the application in the parallelization task of the information inferred by abstract interpretation, using a parametric domain. The methodology is generic in the sense of allowing the use of different analysis domains. A number of well-known approximation domains are then studied and the transformation into the parametric domain defined. The transformation directly illustrates the relevance and applicability of each abstract domain for the application. Both local and global analyzers are then built using these domains and embedded in a complete parallelizing compiler. Then, the performance of the domains in this context is assessed through a number of experiments. A comparatively wide range of aspects is studied, from the resources needed by the analyzers in terms of time and memory to the actual benefits obtained from the information inferred. Such benefits are evaluated both in terms of the characteristics of the parallelized code and of the actual speedups obtained from it. The results show that data flow analysis plays an important role in achieving efficient parallelizations, and that the cost of such analysis can be reasonable even for quite sophisticated abstract domains. Furthermore, the results also offer significant insight into the characteristics of the domains, the demands of the application, and the trade-offs involved.
Resumo:
Desde la explosión de crecimiento de internet que comenzó en los años 90, se han ido creando y poniendo a disposición de los usuarios diversas herramientas para compartir información y servicios de diversas formas, desde el nacimiento del primer navegador hasta nuestros días, donde hay infinidad de lenguajes aplicables al ámbito web. En esta fase de crecimiento, en primer lugar, de cara a usuarios individuales, saldrían herramientas que permitirían a cada cual hacer su web personal, con sus contenidos expuestos. Más adelante se fue generando el fenómeno “comunidad”, con, por ejemplo, foros, o webs en las que había múltiples usuarios que disfrutaban de contenidos o servicios que la web ofreciese. Este crecimiento del mundo web en lo comunitario ha avanzado en muchas ramas,entre ellas, por supuesto, la educacional, surgiendo plataformas como la que es base del proyecto que a continuación se presenta, y herramienta básica y prácticamente ya imprescindible en la enseñanza universitaria: Moodle. Moodle es una herramienta diseñada para compatir recursos y diseñar actividades para el usuario potencial, complementando su aprendizaje en aula, o incluso siendo una vía autónoma de aprendizaje en sí misma. Se ha realizado un estudio sobre el estado de saludo de los contenidos que se exponen en Moodle, y se ha encontrado que una gran mayoría de los cursos que se pueden visitar tienen un gran número de carencias. Por un lado, hay pocos con material original explotado exclusivamente para el curso, y, si tienen material original, no se ha observado una especial atención por la maquetación. Por otro lado, hay muchos otros sin material original, y, en ambos casos, no se ha encontrado ningún curso que ofrezca material audiovisual exclusivo para el curso, presentando algunos en su lugar material audiovisual encontrado en la red (Youtube, etc). A la vista de estos hechos, se ha realizado un proyecto que intenta aportar soluciones ante estas carencias, y se presenta un curso procedente de diversas referencias bibliográficas, para la parte textual, y material audiovisual original e inédito que también se ha explotado específicamente para este curso. Este material ha sido por un lado vídeo, que se ha visionado, editado y subtitulado con software de libre distribución, y por otro lado, audio, que complementa un completo glosario que se ha añadido como extra al curso y cuyo planteamiento no se ha encontrado en ningún curso online de los revisados. Todo esto se ha envuelto en una maquetación cuidada que ha sido fruto del estudio de los lenguajes web html y CSS, de forma que, por un lado, el curso sea un lugar agradable en el que aprender dentro de internet, y por otro, se pudiesen realizar ciertas operaciones que sin estos conocimientos habrían sido imposibles, como la realización del glosario o la incrustación de imágenes y vídeos. A su vez, se ha tratado de dar un enfoque didáctico a toda la memoria del proyecto, de forma que pueda ser de utilidad a un usuario futuro que quisiese profundizar en los usos de Moodle, introducirse en el lenguaje web, o introducirse en el mundo de la edición de vídeo. ABSTRACT: Since the explosion of Internet growth beginning in the 90s, many tools have been created and made available for users to share information and services in various ways, from the birth of the first browser until today, where there are plenty of web programming languages. This growth stage would give individual users tools that would allow everyone to make an own personal website, with their contents exposed. Later, the "community" phenomenon appeared with, for example, forums, or websites where multiple users enjoyed the content or web services that those websites offered. Also, this growth in the web community world has progressed in many fields, including education, with the emerge of platforms such as the one that this project uses as its basis, and which is the basic and imperative tool in college education: Moodle. Moodle is a tool designed to share resources and design activities for the potential user, completing class learning, or even letting this user learn in an autonomous way. In this project a study on the current situation of the content present in Moodle courses around the net has been carried out, and it has been found that most of them lack of original material exploited exclusively for the courses, and if they have original material, there has been not observed concern on the layout where that material lies. On the other hand, there are many other with non original material, and in both cases, there has not been found any course that offers audio- visual material made specifically for the course, instead of presenting some audiovisual material found on the net (Youtube, etc). In view of these facts, the project presented here seeks to provide solutions to these shortcomings, presenting a course with original material exploited from various references, and unpublished audioevisual material which also has been exploited specifically for this course. This material is, on one hand, video, which has been viewed, edited and subtitled with free software, and on the other, audio, which complements a comprehensive glossary that has been added as an extra feature to the course and whose approach was not found in any of the online courses reviewed. All of this has been packaged in a neat layout that has been the result of the study of web languages HTML and CSS, so that first, the course was a pleasant place to learn on the internet, and second, certain operations could be performed which without this knowledge would have been impossible, as the glossary design or embedding images and videos. Furthermore, a didactic approach has been adopted to the entire project memory, so it can be useful to a future user who wanted to go deeper on the uses of Moodle, containing an intro into the web language, or in the world video editing.
Resumo:
A new formalism, called Hiord, for defining type-free higherorder logic programming languages with predicate abstraction is introduced. A model theory, based on partial combinatory algebras, is presented, with respect to which the formalism is shown sound. A programming language built on a subset of Hiord, and its implementation are discussed. A new proposal for defining modules in this framework is considered, along with several examples.
Resumo:
Visualization of program executions has been used in applications which include education and debugging. However, traditional visualization techniques often fall short of expectations or are altogether inadequate for new programming paradigms, such as Constraint Logic Programming (CLP), whose declarative and operational semantics differ in some crucial ways from those of other paradigms. In particular, traditional ideas regarding the behavior of data often cannot be lifted in a straightforward way to (C)LP from other families of programming languages. In this chapter we discuss techniques for visualizing data evolution in CLP. We briefly review some previously proposed visualization paradigms, and also propose a number of (to our knowledge) novel ones. The graphical representations have been chosen based on the perceived needs of a programmer trying to analyze the behavior and characteristics of an execution. In particular, we concéntrate on the representation of the run-time valúes of the variables, and the constraints among them. Given our interest in visualizing large executions, we also pay attention to abstraction techniques, i.e., techniques which are intended to help in reducing the complexity of the visual information.
Resumo:
Visualization of program executions has been found useful in applications which include education and debugging. However, traditional visualization techniques often fall short of expectations or are altogether inadequate for new programming paradigms, such as Constraint Logic Programming (CLP), whose declarative and operational semantics differ in some crucial ways from those of other paradigms. In particular, traditional ideas regarding flow control and the behavior of data often cannot be lifted in a straightforward way to (C)LP from other families of programming languages. In this paper we discuss techniques for visualizing program execution and data evolution in CLP. We briefly review some previously proposed visualization paradigms, and also propose a number of (to our knowledge) novel ones. The graphical representations have been chosen based on the perceived needs of a programmer trying to analyze the behavior and characteristics of an execution. In particular, we concéntrate on the representation of the program execution behavior (control), the runtime valúes of the variables, and the runtime constraints. Given our interest in visualizing large executions, we also pay attention to abstraction techniques, Le., techniques which are intended to help in reducing the complexity of the visual information.
Resumo:
There have been several previous proposals for the integration of Object Oriented Programming features into Logic Programming, resulting in much support theory and several language proposals. However, none of these proposals seem to have made it into the mainstream. Perhaps one of the reasons for these is that the resulting languages depart too much from the standard logic programming languages to entice the average Prolog programmer. Another reason may be that most of what can be done with object-oriented programming can already be done in Prolog through the meta- and higher-order programming facilities that the language includes, albeit sometimes in a more cumbersome way. In light of this, in this paper we propose an alternative solution which is driven by two main objectives. The first one is to include only those characteristics of object-oriented programming which are cumbersome to implement in standard Prolog systems. The second one is to do this in such a way that there is minimum impact on the syntax and complexity of the language, i.e., to introduce the minimum number of new constructs, declarations, and concepts to be learned. Finally, we would like the implementation to be as straightforward as possible, ideally based on simple source to source expansions.
Resumo:
Visualisation of program executions has been used in applications which include education and debugging. However, traditional visualisation techniques often fall short of expectations or are altogether inadequate for new programming paradigms, such as Constraint Logic Programming (CLP), whose declarative and operational semantics differ in some crucial ways from those of other paradigms. In particular, traditional ideas regarding the behaviour of data often cannot be lifted in a straightforward way to (C)LP from other families of programming languages. In this chapter we discuss techniques for visualising data evolution in CLP. We briefly review some previously proposed visualisation paradigms, and also propose a number of (to our knowledge) novel ones. The graphical representations have been chosen based on the perceived needs of a programmer trying to analyse the behaviour and characteristics of an execution. In particular, we concentrate on the representation of the run-time values of the variables, and the constraints among them. Given our interest in visualising large executions, we also pay attention to abstraction techniques, i.e., techniques which are intended to help in reducing the complexity of the visual information.
Resumo:
Background Gray scale images make the bulk of data in bio-medical image analysis, and hence, the main focus of many image processing tasks lies in the processing of these monochrome images. With ever improving acquisition devices, spatial and temporal image resolution increases, and data sets become very large. Various image processing frameworks exists that make the development of new algorithms easy by using high level programming languages or visual programming. These frameworks are also accessable to researchers that have no background or little in software development because they take care of otherwise complex tasks. Specifically, the management of working memory is taken care of automatically, usually at the price of requiring more it. As a result, processing large data sets with these tools becomes increasingly difficult on work station class computers. One alternative to using these high level processing tools is the development of new algorithms in a languages like C++, that gives the developer full control over how memory is handled, but the resulting workflow for the prototyping of new algorithms is rather time intensive, and also not appropriate for a researcher with little or no knowledge in software development. Another alternative is in using command line tools that run image processing tasks, use the hard disk to store intermediate results, and provide automation by using shell scripts. Although not as convenient as, e.g. visual programming, this approach is still accessable to researchers without a background in computer science. However, only few tools exist that provide this kind of processing interface, they are usually quite task specific, and don’t provide an clear approach when one wants to shape a new command line tool from a prototype shell script. Results The proposed framework, MIA, provides a combination of command line tools, plug-ins, and libraries that make it possible to run image processing tasks interactively in a command shell and to prototype by using the according shell scripting language. Since the hard disk becomes the temporal storage memory management is usually a non-issue in the prototyping phase. By using string-based descriptions for filters, optimizers, and the likes, the transition from shell scripts to full fledged programs implemented in C++ is also made easy. In addition, its design based on atomic plug-ins and single tasks command line tools makes it easy to extend MIA, usually without the requirement to touch or recompile existing code. Conclusion In this article, we describe the general design of MIA, a general purpouse framework for gray scale image processing. We demonstrated the applicability of the software with example applications from three different research scenarios, namely motion compensation in myocardial perfusion imaging, the processing of high resolution image data that arises in virtual anthropology, and retrospective analysis of treatment outcome in orthognathic surgery. With MIA prototyping algorithms by using shell scripts that combine small, single-task command line tools is a viable alternative to the use of high level languages, an approach that is especially useful when large data sets need to be processed.