947 resultados para Visual pattern recognition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the work was to develop a non-invasive methodology for image acquisition, processing and nonlinear trajectory analysis of the collective fish response to a stochastic event. Object detection and motion estimation were performed by an optical flow algorithm in order to detect moving fish and simultaneously eliminate background, noise and artifacts. The Entropy and the Fractal Dimension (FD) of the trajectory followed by the centroids of the groups of fish were calculated using Shannon and permutation Entropy and the Katz, Higuchi and Katz-Castiglioni's FD algorithms respectively. The methodology was tested on three case groups of European sea bass (Dicentrarchus labrax), two of which were similar (C1 control and C2 tagged fish) and very different from the third (C3, tagged fish submerged in methylmercury contaminated water). The results indicate that Shannon entropy and Katz-Castiglioni were the most sensitive algorithms and proved to be promising tools for the non-invasive identification and quantification of differences in fish responses. In conclusion, we believe that this methodology has the potential to be embedded in online/real time architecture for contaminant monitoring programs in the aquaculture industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

First responders are in danger when they perform tasks in damaged buildings after earthquakes. Structural collapse due to the failure of critical load bearing structural members (e.g. columns) during a post-earthquake event such as an aftershock can make first responders victims, considering they are unable to assess the impact of the damage inflicted in load bearing members. The writers here propose a method that can provide first responders with a crude but quick estimate of the damage inflicted in load bearing members. Under the proposed method, critical structural members (reinforced concrete columns in this study) are identified from digital visual data and the damage superimposed on these structural members is detected with the help of Visual Pattern Recognition techniques. The correlation of the two (e.g. the position, orientation and size of a crack on the surface of a column) is used to query a case-based reasoning knowledge base, which contains apriori classified states of columns according to the damage inflicted on them. When query results indicate the column's damage state is severe, the method assumes that a structural collapse is likely and first responders are warned to evacuate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This book will be of particular interest to academics, researchers, and graduate students at universities and industrial practitioners seeking to apply mobile and pervasive computing systems to improve construction industry productivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a new classifier of speaker identification has been proposed, which is based on Biomimetic pattern recognition (BPR). Distinguished from traditional speaker recognition methods, such as DWT, HMM, GMM, SVM and so on, the proposed classifier is constructed by some finite sub-space which is reasonable covering of the points in high dimensional space according to distributing characteristic of speech feature points. It has been used in the system of speaker identification. Experiment results show that better effect could be obtained especially with lesser samples. Furthermore, the proposed classifier employs a much simpler modeling structure as compared to the GMM. In addition, the basic idea "cognition" of Biomimetic pattern recognition (BPR) results in no requirement of retraining the old system for enrolling new speakers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Correct classification of different metabolic cycle stages to identification cell cycle is significant in both human development and clinical diagnostics. However, it has no perfect method has been reached in classification of metabolic cycle yet. This paper exploringly puts forward an automatic classification method of metabolic cycle based on Biomimetic pattern recognition (BPR). As to the three phases of yeast metabolic cycle, the correct classification rate reaches 90%, 100% and 100% respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biomimetic pattern recogntion (BPR), which is based on "cognition" instead of "classification", is much closer to the function of human being. The basis of BPR is the Principle of homology-continuity (PHC), which means the difference between two samples of the same class must be gradually changed. The aim of BPR is to find an optimal covering in the feature space, which emphasizes the "similarity" among homologous group members, rather than "division" in traditional pattern recognition. Some applications of BPR are surveyed, in which the results of BPR are much better than the results of Support Vector Machine. A novel neuron model, Hyper sausage neuron (HSN), is shown as a kind of covering units in BPR. The mathematical description of HSN is given and the 2-dimensional discriminant boundary of HSN is shown. In two special cases, in which samples are distributed in a line segment and a circle, both the HSN networks and RBF networks are used for covering. The results show that HSN networks act better than RBF networks in generalization, especially for small sample set, which are consonant with the results of the applications of BPR. And a brief explanation of the HSN networks' advantages in covering general distributed samples is also given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies on learning problems from geometry perspective have attracted an ever increasing attention in machine learning, leaded by achievements on information geometry. This paper proposes a different geometrical learning from the perspective of high-dimensional descriptive geometry. Geometrical properties of high-dimensional structures underlying a set of samples are learned via successive projections from the higher dimension to the lower dimension until two-dimensional Euclidean plane, under guidance of the established properties and theorems in high-dimensional descriptive geometry. Specifically, we introduce a hyper sausage like geometry shape for learning samples and provides a geometrical learning algorithm for specifying the hyper sausage shapes, which is then applied to biomimetic pattern recognition. Experimental results are presented to show that the proposed approach outperforms three types of support vector machines with either a three degree polynomial kernel or a radial basis function kernel, especially in the cases of high-dimensional samples of a finite size. (c) 2005 Elsevier B.V. All rights reserved.