855 resultados para Visual Evoked Potentials


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A decrease in the check size of a pattern shift stimulus increases the latency and amplitude of the visual evoked potential (VEP) P100. In addition, for a given check size, decreasing the size of the stimulus field increases the latency and amplitude of the P100. These results imply that the central regions of the retina make a significant contribution to the generation of the electrical P100. However, the corresponding magnetic P100m may have a different origin. We have studied the effects of check and field size on the P100m in five normal subjects using a DC-Squid, second-order gradiometer. Magnetic responses were recorded at the positive maximum of the P100m over the occipital scalp to six check sizes (10-100') presented in a large (13 degrees 34') and small (5 degrees 14') field and to a large check (100') presented in seven field sizes (1 degree 45' - 15 degrees 10'). No responses were recorded to any check size with a small field. Decreasing the check size presented in a large field increased latency of the P100m by approx. 30 ms while the amplitude of the response decreased with the largest reduction occurring between 70' and 12' checks. Using a large check, latency increased and amplitude decreased as the field size was reduced. The latency changes in response to check and field size were similar to those described for the VEP although the magnitudes of the magnetic changes were greater. Unlike the VEP, amplitude responses were maximal when large checks were presented in a large stimulus field. This suggests that regions outside the central retina make a more significant contribution to the visual evoked magnetic response than they do to the VEP, and that the P100m may be useful clinically in the study of diseases that affect the more peripheral regions of the retina.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The density of senile plaques (SP) and neurofibrillary tangles (NFT) was estimated at post-mortem in areas B17 and B18 of the visual cortex in 18 Alzheimer’s disease (AD) cases which varied in disease onset and duration. The density of SP in B17 and NFT in B17 and B18 declined significantly with age at death of the patient. The density of SP and NFT was greater in B18 than B17 but only in cases of earlier onset and shorter duration. The pathological differences between B17 and B18 could explain the visual evoked responses (VER) that have been reported in AD. However, the differences were small, and changes in the afferent pathways remain the most likely explanation for the VER in AD. © 1994 S. Karger AG, Basel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The topography of the visual evoked magnetic response (VEMR) to a pattern onset stimulus was studied in five normal subjects using a single channel BTi magnetometer. Topographic distributions were analysed at regular intervals following stimulus onset (chronotopograpby). Two distinct field distributions were observed with half field stimulation: (1) activity corresponding to the C11 m which remains stable for an average of 34 msec and (2) activity corresponding to the C111 m which remains stable for about 50 msec. However, the full field topography of the largest peak within the first 130 msec does not have a predictable latency or topography in different subjects. The data suggest that the appearance of this peak is dependent on the amplitude, latency and duration of the half field C11 m peaks and the efficiency of half field summation. Hence, topographic mapping is essential to correctly identify the C11 m peak in a full field response as waveform morphology, peak latency and polarity are not reliable indicators. © 1993.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The visual evoked magnetic response to half-field stimulation using pattern reversal was studied using a d.c. SQUID coupled to a second order gradiometer. The main component of the magnetic response consisted of a positive wave at around 100 ms (P100M). At the time this component was present the response to half-field stimulation consisted of an outgoing magnetic field contralateral and extending to the midline. When the left half field was stimulated the outgoing field was over the posterior right visual cortex and when the right half field was stimulated it was over the left anterior visual cortex. These findings would correctly identify a source located in the contralateral visual cortex. The orientation of the dipoles was not that previously assumed to explain the paradoxical lateralization of the visual evoked potential. The results are discussed in terms of both electrical and magnetic models of the calcarine fissure. © 1992.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The topography of the visual evoked magnetic response (VEMR) to a pattern onset stimulus was investigated using 4 check sizes and 3 contrast levels. The pattern onset response consists of three early components within the first 200ms, CIm, CIIm and CIIIm. The CIIm is usually of high amplitude and is very consistent in latency within a subject. Half field (HF) stimuli produce their strongest response over the contralateral hemisphere; the RHF stimulus exhibiting a lower positivity (outgoing field) and an upper negativity (ingoing field), rotated towards the midline. LHF stimulation produced the opposite response, a lower negative and an upper positive. Larger check sizes produce a single area of ingoing and outgoing field while smaller checks produce on area of ingoing and outgoing field over each hemisphere. Latency did not appear to vary with change in contrast but amplitudes increased with increasing contrast. A more detailed topographic study incorporating source localisation procedures suggested a source for CIIm - 4cm below the scalp, close to the midline with current flowing towards the lateral surface. Similar depth and position estimates but with opposite polarity were obtained for the pattern shift P100m previously. Hence, the P100m and the CIIm may originate in similar areas of visual cortex but reveal different aspects of visual processing. © 1992 Human Sciences Press, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The visual evoked magnetic response (VEMR) was measured over the occipital cortex to pattern and flash stimuli in 86 normal subjects aged 15-86 years. The latency of the major positive component (outgoing magnetic field) to the pattern reversal stimulus (P100M) increased with age, particularly after 55 years, while the amplitude of the P100M decreased more gradually over the lifespan. By contrast, the latency of the major positive component to the flash stimulus (P2M) increased more slowly with age after about 50 years, while its amplitude may have decreased in only a proportion of the elderly subjects. The changes in the P100M with age may reflect senile changes in the eye and optic nerve, e.g. senile miosis, degenerative changes in the retina or geniculostriate deficits. The P2M may be more susceptible to senile changes in the visual cortex. The data suggest that the contrast channels of visual information processing deteriorate more rapidly with age than the luminance channels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The topography of the visual evoked magnetic response (VEMR) to pattern reversal stimulation was studied in four normal subjects using a single channel BTI magnetometer. VEMRs were recorded from 20 locations over the occipital scalp and the topographic distribution of the most consistent component (P100M) studied. A single dipole in a sphere model was fitted to the data. Topographic maps were similar when recorded two months apart on the same subject to the same stimulus. Half field (HF) stimulation elicited responses from sources on the medial surface of the calcarine fissure mainly in the contralateral hemisphere as predicted by the cruciform model. The full field (FF) responses to large checks were approximately the sum of the HF responses. However, with small checks, FF stimulation appeared to activate a different combination of sources than the two HFs. In addition, HF topography was more consistent between subjects than FF for small check sizes. Topographic studies of the VEMR may help to explain the analogous visual evoked electrical response and will be essential to define optimal recording positions for clinical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The topography of the visual evoked magnetic response to a pattern onset stimulus was studied in four normal subjects. The topography of th CIIm component was consistent when measured on the same subject nine months apart. Full field responses were more variable than half field responses. With decreasing check size, the field pattern changes from a simple distribution with one outgoing and one ingoing area of field to a more complex pattern with in and outgoing fields over each hemisphere of the brain. The source may originate at the pole or from within the calcarine fissure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The visual evoked magnetic response to half-field stimulation using pattern reversal was studied using a dc-SQUID coupled to a second-order gradiometer. The main component of the magnetic response consisted of a positive wave at around 100ms (P100M). At the same time this component was present the reponse to half-field stimulation consisted of an outgoing field contralateral and extending to the midline. When the left half-field was stimulates the outgoing field was over the posterior right visual cortex and when the right half field was stimulated it was over the left anterior visual cortex. These findings would correltly identify a source located in the contralateral visual cortex. The orientation of the dipoles was not that previously assumed to explain the paradoxical lateralization of the visual evoked potential. The results are discussed in terms of both electrical and magnetic models of the calcarine fissure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the effect of ageing on the visual system using the relatively new technique of magentoencephalography (MEG). This technique measures the magnetic signals produced by the visual system using a SQUID magnetometer. The magnetic visual evoked field (VEF) was measured over the occipital cortex to pattern and flash stimuli in 86 normal subjects aged 15 - 86 years. Factors that influenced subject defocussing or defixating the stimulus or selective attention were controlled as far as possible. The latency of the major positive component to the pattern reversal stimulus (P100M) increased with age particularly after the age of 55 years while the amplitude of the P100M decreased over the life span. The latency of the major flash component (P2M) increased much more slowly with age, while its amplitude decreased in only a proportion of elderly subjects. Changes in the P100M with age may reflect senile changes in the eye and optic nerve, e.g. senile miosis or degenerative changes in the retina. The P2M may be more susceptible to senile changes in the retina. The data suggest that the spatial frequency channels deteriorate more rapidly with age than the luminance channels and that MEG may be an effective method of studying ageing in the visual system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different visual stimuli may activate separate channels in the visual system and produce magnetic responses from the human bran which originate from distinct regions of the visual cortex. To test this hypothesis, we have investigated the distribution of visual evoked magnetic responses to three distinct visual stimuli over the occipital region of the scalp with a DC-SQUID second-order gradiometer in an ubshielded environment. Patterned stimuli were presented full field and to the right half field, while a flash stimulus was presented full field only, in five normal subjects. Magnetic responses were recorded from 20 to 42 positions over the occipital scalp. Topographic maps were prepared of the major positive component within the first 150ms to the three stimuli, i.e., the P100m (pattern shift), C11m (pattern onset) and P2m (flash). For the pattern shift stimulus the data suggested the source of the P100m was close to the midline with the current directed towards the medial surface. The data for the pattern onset C11m suggested a source at a similar depth but with the current directed away from the midline towards the lateral surface. The flash P2m appeared to originate closer to the surface of the occipital pole than both the patterned stimuli. Hence the pattern shift (which may represent movement), and the pattern onset C11m (representing contrast and contour) appear to originate in similar areas of brain but to represent different asepcts of cortical processing. By contrast, the flash P2m (representing luminance change) appears to originate in a distinct area of visual cortex closer to the occipital pole.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the visual evoked potential to pattern reversal stimulation produces a paradoxical lateralisation of the major positive P100 component and since this paradoxical lateralisation is dependent on the stimulus parameters including check and field size, we have therefore, carried out a study of the magnetic response (VEMR) to a pattern reversal stimulus in four normal subjects using both full field and half field stimulation and two different check sizes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The practicality or recording normative data for two components of the visually evoked magnetic response (VEMR) (P100M and P2M) using a single channel dc-SQUID second order gradiometer in an unshielded environment was investigated. Latency norms of the P100M and P2M were more variable than the corresponding electrical P100 and P2 visual evoked potentials. Methods of improving the normative data for clinical use were discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The visual evoked magnetic response CIIm component to a pattern onset stimulus presented half field produced a consistent scalp topography in 15 normal subjects. The major response was seen over the contralateral hemisphere, suggesting a dipole with current flowing away from the medial surface of the brain. Full field responses were more unpredictable. The reponses of five subjects were studied to the onset of a full, left half and right half checkerboard stimuli of 38 x 27 min arc checks appearing for 200 ms. In two subjects the full field CIIm topography was consistent with that of the mathematical summation of their relevant half field distribution. The remaining subjects had unpredictable full field topographies, showing little or no relationship to their half or summated half fields. In each of these subjects, a distribution matching that of the summated half field CIIm distribution appears at an earlier latency than that of the predominant full field waveform peak. By examining the topography of the full and half field responses at 5 ms intervals along the waveform for one such subject, the CIIm topography of the right hemisphere develops 10 ms before that of the left hemisphere, and is replaced by the following CIIIm component 20 ms earlier. Hence, the large peak seen in full field results from a combination of the CIIm component of the left hemisphere plus that of the CIIIm from the right. The earlier peak results from the CIIm generated in both hemispheres, at a latency where both show similar amplitudes. As the relative amplitudes of these two peaks alter with check and field size, topographic studies would be required for accurate CIIm identification. In addition. the CIIm-CIIIm complex lasts for 80 ms in the right hemisphere and 135 ms in the left, suggesting hemispherical apecialization in the visual processing of the pattern onset response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distributed source analyses of half-field pattern onset visual evoked magnetic responses (VEMR) were carried out by the authors with a view to locating the source of the largest of the components, the CIIm. The analyses were performed using a series of realistic source spaces taking into account the anatomy of the visual cortex. Accuracy was enhanced by constraining the source distributions to lie within the visual cortex only. Further constraints on the source space yielded reliable, but possibly less meaningful, solutions.