788 resultados para Video coding


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the last recent years, with the popularity of image compression techniques, many architectures have been proposed. Those have been generally based on the Forward and Inverse Discrete Cosine Transform (FDCT, IDCT). Alternatively, compression schemes based on discrete “wavelets” transform (DWT), used, both, in JPEG2000 coding standard and in the next H264-SVC (Scalable Video Coding), do not need to divide the image into non-overlapping blocks or macroblocks. This paper discusses the DLMT (Discrete Lopez-Moreno Transform). It proposes a new scheme intermediate between the DCT and the DWT (Discrete Wavelet Transform). The DLMT is computationally very similar to the DCT and uses quasi-sinusoidal functions, so the emergence of artifact blocks and their effects have a relative low importance. The use of quasi-sinusoidal functions has allowed achieving a multiresolution control quite close to that obtained by a DWT, but without increasing the computational complexity of the transformation. The DLMT can also be applied over a whole image, but this does not involve increasing computational complexity. Simulation results in MATLAB show that the proposed DLMT has significant performance benefits and improvements comparing with the DCT

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Desde los inicios de la codificación de vídeo digital hasta hoy, tanto la señal de video sin comprimir de entrada al codificador como la señal de salida descomprimida del decodificador, independientemente de su resolución, uso de submuestreo en los planos de diferencia de color, etc. han tenido siempre la característica común de utilizar 8 bits para representar cada una de las muestras. De la misma manera, los estándares de codificación de vídeo imponen trabajar internamente con estos 8 bits de precisión interna al realizar operaciones con las muestras cuando aún no se han transformado al dominio de la frecuencia. Sin embargo, el estándar H.264, en gran auge hoy en día, permite en algunos de sus perfiles orientados al mundo profesional codificar vídeo con más de 8 bits por muestra. Cuando se utilizan estos perfiles, las operaciones efectuadas sobre las muestras todavía sin transformar se realizan con la misma precisión que el número de bits del vídeo de entrada al codificador. Este aumento de precisión interna tiene el potencial de permitir unas predicciones más precisas, reduciendo el residuo a codificar y aumentando la eficiencia de codificación para una tasa binaria dada. El objetivo de este Proyecto Fin de Carrera es estudiar, utilizando las medidas de calidad visual objetiva PSNR (Peak Signal to Noise Ratio, relación señal ruido de pico) y SSIM (Structural Similarity, similaridad estructural), el efecto sobre la eficiencia de codificación y el rendimiento al trabajar con una cadena de codificación/descodificación H.264 de 10 bits en comparación con una cadena tradicional de 8 bits. Para ello se utiliza el codificador de código abierto x264, capaz de codificar video de 8 y 10 bits por muestra utilizando los perfiles High, High 10, High 4:2:2 y High 4:4:4 Predictive del estándar H.264. Debido a la ausencia de herramientas adecuadas para calcular las medidas PSNR y SSIM de vídeo con más de 8 bits por muestra y un tipo de submuestreo de planos de diferencia de color distinto al 4:2:0, como parte de este proyecto se desarrolla también una aplicación de análisis en lenguaje de programación C capaz de calcular dichas medidas a partir de dos archivos de vídeo sin comprimir en formato YUV o Y4M. ABSTRACT Since the beginning of digital video compression, the uncompressed video source used as input stream to the encoder and the uncompressed decoded output stream have both used 8 bits for representing each sample, independent of resolution, chroma subsampling scheme used, etc. In the same way, video coding standards force encoders to work internally with 8 bits of internal precision when working with samples before being transformed to the frequency domain. However, the H.264 standard allows coding video with more than 8 bits per sample in some of its professionally oriented profiles. When using these profiles, all work on samples still in the spatial domain is done with the same precision the input video has. This increase in internal precision has the potential of allowing more precise predictions, reducing the residual to be encoded, and thus increasing coding efficiency for a given bitrate. The goal of this Project is to study, using PSNR (Peak Signal to Noise Ratio) and SSIM (Structural Similarity) objective video quality metrics, the effects on coding efficiency and performance caused by using an H.264 10 bit coding/decoding chain compared to a traditional 8 bit chain. In order to achieve this goal the open source x264 encoder is used, which allows encoding video with 8 and 10 bits per sample using the H.264 High, High 10, High 4:2:2 and High 4:4:4 Predictive profiles. Given that no proper tools exist for computing PSNR and SSIM values of video with more than 8 bits per sample and chroma subsampling schemes other than 4:2:0, an analysis application written in the C programming language is developed as part of this Project. This application is able to compute both metrics from two uncompressed video files in the YUV or Y4M format.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La constante evolución de dispositivos portátiles multimedia que se ha producido en la última década ha provocado que hoy en día se disponga de una amplia variedad de dispositivos con capacidad para reproducir contenidos multimedia. En consecuencia, la reproducción de esos contenidos en dichos terminales lleva asociada disponer de procesadores que soporten una alta carga computacional, ya que las tareas de descodificación y presentación de video así lo requieren. Sin embargo, un procesador potente trabajando a elevadas frecuencias provoca un elevado consumo de la batería, y dado que se pretende trabajar con dispositivos portátiles, la vida útil de la batería se convierte en un asunto de especial importancia. La problemática que se plantea se ha convertido en una de las principales líneas de investigación del Grupo de Investigación GDEM (Grupo de Diseño Electrónico y Microelectrónico). En esta línea de trabajo, se persigue cómo optimizar el consumo de energía en terminales portables desde el punto de vista de la reducción de la calidad de experiencia del usuario a cambio de una mayor autonomía del terminal. Por tanto, para lograr esa reducción de la calidad de experiencia mencionada, se requiere un estándar de codificación de vídeo que así lo permita. El Grupo de Investigación GDEM cuenta con experiencia en el estándar de vídeo escalable H.264/SVC, el cual permite degradar la calidad de experiencia en función de las necesidades/características del dispositivo. Más concretamente, un video escalable contiene embebidas distintas versiones del video original que pueden ser descodificadas en diferentes resoluciones, tasas de cuadro y calidades (escalabilidades espacial, temporal y de calidad respectivamente), permitiendo una adaptación rápida y muy flexible. Seleccionado el estándar H.264/SVC para las tareas de vídeo, se propone trabajar con Mplayer, un reproductor de vídeos de código abierto (open source), al cual se le ha integrado un descodificador para vídeo escalable denominado OpenSVC. Por último, como dispositivo portable se trabajará con la plataforma de desarrollo BeagleBoard, un sistema embebido basado en el procesador OMAP3530 que permite modificar la frecuencia de reloj y la tensión de alimentación dinámicamente reduciendo de este modo el consumo del terminal. Este procesador a su vez contiene integrados un procesador de propósito general (ARM Cortex-A8) y un procesador digital de señal (DSP TMS320C64+TM). Debido a la alta carga computacional de la descodificación de vídeos escalables y la escasa optimización del ARM para procesamiento de datos, se propone llevar a cabo la ejecución de Mplayer en el ARM y encargar la tarea de descodificación al DSP, con la finalidad de reducir el consumo y por tanto aumentar la vida útil del sistema embebido sobre el cual se ejecutará la aplicación desarrollada. Una vez realizada esa integración, se llevará a cabo una caracterización del descodificador alojado en el DSP a través de una serie de medidas de rendimiento y se compararán los resultados con los obtenidos en el proceso de descodificación realizado únicamente en el ARM. ABSTRACT During the last years, the multimedia portable terminals have gradually evolved causing that nowadays a several range of devices with the ability of playing multimedia contents are easily available for everyone. Consequently, those multimedia terminals must have high-performance processors to play those contents because the coding and decoding tasks demand high computational load. However, a powerful processor performing to high frequencies implies higher battery consumption, and this issue has become one of the most important problems in the development cycle of a portable terminal. The power/energy consumption optimization on multimedia terminals has become in one the most significant work lines in the Electronic and Microelectronic Research Group of the Universidad Politécnica de Madrid. In particular, the group is researching how to reduce the user‟s Quality of Experience (QoE) quality in exchange for increased battery life. In order to reduce the Quality of Experience (QoE), a standard video coding that allows this operation is required. The H.264/SVC allows reducing the QoE according to the needs/characteristics of the terminal. Specifically, a scalable video contains different versions of original video embedded in an only one video stream, and each one of them can be decoded in different resolutions, frame rates and qualities (spatial, temporal and quality scalabilities respectively). Once the standard video coding is selected, a multimedia player with support for scalable video is needed. Mplayer has been proposed as a multimedia player, whose characteristics (open-source, enormous flexibility and scalable video decoder called OpenSVC) are the most suitable for the aims of this Master Thesis. Lastly, the embedded system BeagleBoard, based on the multi-core processor OMAP3530, will be the development platform used in this project. The multimedia terminal architecture is based on a commercial chip having a General Purpose Processor (GPP – ARM Cortex A8) and a Digital Signal Processor (DSP, TMS320C64+™). Moreover, the processor OMAP3530 has the ability to modify the operating frequency and the supply voltage in a dynamic way in order to reduce the power consumption of the embedded system. So, the main goal of this Master Thesis is the integration of the multimedia player, MPlayer, executed at the GPP, and scalable video decoder, OpenSVC, executed at the DSP in order to distribute the computational load associated with the scalable video decoding task and to reduce the power consumption of the terminal. Once the integration is accomplished, the performance of the OpenSVC decoder executed at the DSP will be measured using different combinations of scalability values. The obtained results will be compared with the scalable video decoding performed at the GPP in order to show the low optimization of this kind of architecture for decoding tasks in contrast to DSP architecture.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Single core capabilities have reached their maximum clock speed; new multicore architectures provide an alternative way to tackle this issue instead. The design of decoding applications running on top of these multicore platforms and their optimization to exploit all system computational power is crucial to obtain best results. Since the development at the integration level of printed circuit boards are increasingly difficult to optimize due to physical constraints and the inherent increase in power consumption, development of multiprocessor architectures is becoming the new Holy Grail. In this sense, it is crucial to develop applications that can run on the new multi-core architectures and find out distributions to maximize the potential use of the system. Today most of commercial electronic devices, available in the market, are composed of embedded systems. These devices incorporate recently multi-core processors. Task management onto multiple core/processors is not a trivial issue, and a good task/actor scheduling can yield to significant improvements in terms of efficiency gains and also processor power consumption. Scheduling of data flows between the actors that implement the applications aims to harness multi-core architectures to more types of applications, with an explicit expression of parallelism into the application. On the other hand, the recent development of the MPEG Reconfigurable Video Coding (RVC) standard allows the reconfiguration of the video decoders. RVC is a flexible standard compatible with MPEG developed codecs, making it the ideal tool to integrate into the new multimedia terminals to decode video sequences. With the new versions of the Open RVC-CAL Compiler (Orcc), a static mapping of the actors that implement the functionality of the application can be done once the application executable has been generated. This static mapping must be done for each of the different cores available on the working platform. It has been chosen an embedded system with a processor with two ARMv7 cores. This platform allows us to obtain the desired tests, get as much improvement results from the execution on a single core, and contrast both with a PC-based multiprocessor system. Las posibilidades ofrecidas por el aumento de la velocidad de la frecuencia de reloj de sistemas de un solo procesador están siendo agotadas. Las nuevas arquitecturas multiprocesador proporcionan una vía de desarrollo alternativa en este sentido. El diseño y optimización de aplicaciones de descodificación de video que se ejecuten sobre las nuevas arquitecturas permiten un mejor aprovechamiento y favorecen la obtención de mayores rendimientos. Hoy en día muchos de los dispositivos comerciales que se están lanzando al mercado están integrados por sistemas embebidos, que recientemente están basados en arquitecturas multinúcleo. El manejo de las tareas de ejecución sobre este tipo de arquitecturas no es una tarea trivial, y una buena planificación de los actores que implementan las funcionalidades puede proporcionar importantes mejoras en términos de eficiencia en el uso de la capacidad de los procesadores y, por ende, del consumo de energía. Por otro lado, el reciente desarrollo del estándar de Codificación de Video Reconfigurable (RVC), permite la reconfiguración de los descodificadores de video. RVC es un estándar flexible y compatible con anteriores codecs desarrollados por MPEG. Esto hace de RVC el estándar ideal para ser incorporado en los nuevos terminales multimedia que se están comercializando. Con el desarrollo de las nuevas versiones del compilador específico para el desarrollo de lenguaje RVC-CAL (Orcc), en el que se basa MPEG RVC, el mapeo estático, para entornos basados en multiprocesador, de los actores que integran un descodificador es posible. Se ha elegido un sistema embebido con un procesador con dos núcleos ARMv7. Esta plataforma nos permitirá llevar a cabo las pruebas de verificación y contraste de los conceptos estudiados en este trabajo, en el sentido del desarrollo de descodificadores de video basados en MPEG RVC y del estudio de la planificación y mapeo estático de los mismos.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the last recent years, with the popularity of image compression techniques, many architectures have been proposed. Those have been generally based on the Forward and Inverse Discrete Cosine Transform (FDCT, IDCT). Alternatively, compression schemes based on discrete "wavelets" transform (DWT), used, both, in JPEG2000 coding standard and in H264-SVC (Scalable Video Coding) standard, do not need to divide the image into non-overlapping blocks or macroblocks. This paper discusses the DLMT (Discrete Lopez-Moreno Transform) hardware implementation. It proposes a new scheme intermediate between the DCT and the DWT, comparing results of the most relevant proposed architectures for benchmarking. The DLMT can also be applied over a whole image, but this does not involve increasing computational complexity. FPGA implementation results show that the proposed DLMT has significant performance benefits and improvements comparing with the DCT and the DWT and consequently it is very suitable for implementation on WSN (Wireless Sensor Network) applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El presente proyecto final de carrera titulado “Modelado de alto nivel con SystemC” tiene como objetivo principal el modelado de algunos módulos de un codificador de vídeo MPEG-2 utilizando el lenguaje de descripción de sistemas igitales SystemC con un nivel de abstracción TLM o Transaction Level Modeling. SystemC es un lenguaje de descripción de sistemas digitales basado en C++. En él hay un conjunto de rutinas y librerías que implementan tipos de datos, estructuras y procesos especiales para el modelado de sistemas digitales. Su descripción se puede consultar en [GLMS02] El nivel de abstracción TLM se caracteriza por separar la comunicación entre los módulos de su funcionalidad. Este nivel de abstracción hace un mayor énfasis en la funcionalidad de la comunicación entre los módulos (de donde a donde van datos) que la implementación exacta de la misma. En los documentos [RSPF] y [HG] se describen el TLM y un ejemplo de implementación. La arquitectura del modelo se basa en el codificador MVIP-2 descrito en [Gar04], de dicho modelo, los módulos implementados son: · IVIDEOH: módulo que realiza un filtrado del vídeo de entrada en la dimensión horizontal y guarda en memoria el video filtrado. · IVIDEOV: módulo que lee de la memoria el vídeo filtrado por IVIDEOH, realiza el filtrado en la dimensión horizontal y escribe el video filtrado en memoria. · DCT: módulo que lee el video filtrado por IVIDEOV, hace la transformada discreta del coseno y guarda el vídeo transformado en la memoria. · QUANT: módulo que lee el video transformado por DCT, lo cuantifica y guarda el resultado en la memoria. · IQUANT: módulo que lee el video cuantificado por QUANT, realiza la cuantificación inversa y guarda el resultado en memoria. · IDCT: módulo que lee el video procesado por IQUANT, realiza la transformada inversa del coseno y guarda el resultado en memoria. · IMEM: módulo que hace de interfaz entre los módulos anteriores y la memoria. Gestiona las peticiones simultáneas de acceso a la memoria y asegura el acceso exclusivo a la memoria en cada instante de tiempo. Todos estos módulos aparecen en gris en la siguiente figura en la que se muestra la arquitectura del modelo: Figura 1. Arquitectura del modelo (VER PDF DEL PFC) En figura también aparecen unos módulos en blanco, dichos módulos son de pruebas y se han añadido para realizar simulaciones y probar los módulos del modelo: · CAMARA: módulo que simula una cámara en blanco y negro, lee la luminancia de un fichero de vídeo y lo envía al modelo a través de una FIFO. · FIFO: hace de interfaz entre la cámara y el modelo, guarda los datos que envía la cámara hasta que IVIDEOH los lee. · CONTROL: módulo que se encarga de controlar los módulos que procesan el vídeo, estos le indican cuando terminan de procesar un frame de vídeo y este módulo se encarga de iniciar los módulos que sean necesarios para seguir con la codificación. Este módulo se encarga del correcto secuenciamiento de los módulos procesadores de vídeo. · RAM: módulo que simula una memoria RAM, incluye un retardo programable en el acceso. Para las pruebas también se han generado ficheros de vídeo con el resultado de cada módulo procesador de vídeo, ficheros con mensajes y un fichero de trazas en el que se muestra el secuenciamiento de los procesadores. Como resultado del trabajo en el presente PFC se puede concluir que SystemC permite el modelado de sistemas digitales con bastante sencillez (hace falta conocimientos previos de C++ y programación orientada objetos) y permite la realización de modelos con un nivel de abstracción mayor a RTL, el habitual en Verilog y VHDL, en el caso del presente PFC, el TLM. ABSTRACT This final career project titled “High level modeling with SystemC” have as main objective the modeling of some of the modules of an MPEG-2 video coder using the SystemC digital systems description language at the TLM or Transaction Level Modeling abstraction level. SystemC is a digital systems description language based in C++. It contains routines and libraries that define special data types, structures and process to model digital systems. There is a complete description of the SystemC language in the document [GLMS02]. The main characteristic of TLM abstraction level is that it separates the communication among modules of their functionality. This abstraction level puts a higher emphasis in the functionality of the communication (from where to where the data go) than the exact implementation of it. The TLM and an example are described in the documents [RSPF] and [HG]. The architecture of the model is based in the MVIP-2 video coder (described in the document [Gar04]) The modeled modules are: · IVIDEOH: module that filter the video input in the horizontal dimension. It saves the filtered video in the memory. · IVIDEOV: module that read the IVIDEOH filtered video, filter it in the vertical dimension and save the filtered video in the memory. · DCT: module that read the IVIDEOV filtered video, do the discrete cosine transform and save the transformed video in the memory. · QUANT: module that read the DCT transformed video, quantify it and save the quantified video in the memory. · IQUANT: module that read the QUANT processed video, do the inverse quantification and save the result in the memory. · IDCT: module that read the IQUANT processed video, do the inverse cosine transform and save the result in the memory. · IMEM: this module is the interface between the modules described previously and the memory. It manage the simultaneous accesses to the memory and ensure an unique access at each instant of time All this modules are included in grey in the following figure (SEE PDF OF PFC). This figure shows the architecture of the model: Figure 1. Architecture of the model This figure also includes other modules in white, these modules have been added to the model in order to simulate and prove the modules of the model: · CAMARA: simulates a black and white video camera, it reads the luminance of a video file and sends it to the model through a FIFO. · FIFO: is the interface between the camera and the model, it saves the video data sent by the camera until the IVIDEOH module reads it. · CONTROL: controls the modules that process the video. These modules indicate the CONTROL module when they have finished the processing of a video frame. The CONTROL module, then, init the necessary modules to continue with the video coding. This module is responsible of the right sequence of the video processing modules. · RAM: it simulates a RAM memory; it also simulates a programmable delay in the access to the memory. It has been generated video files, text files and a trace file to check the correct function of the model. The trace file shows the sequence of the video processing modules. As a result of the present final career project, it can be deduced that it is quite easy to model digital systems with SystemC (it is only needed previous knowledge of C++ and object oriented programming) and it also allow the modeling with a level of abstraction higher than the RTL used in Verilog and VHDL, in the case of the present final career project, the TLM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La optimización de parámetros tales como el consumo de potencia, la cantidad de recursos lógicos empleados o la ocupación de memoria ha sido siempre una de las preocupaciones principales a la hora de diseñar sistemas embebidos. Esto es debido a que se trata de sistemas dotados de una cantidad de recursos limitados, y que han sido tradicionalmente empleados para un propósito específico, que permanece invariable a lo largo de toda la vida útil del sistema. Sin embargo, el uso de sistemas embebidos se ha extendido a áreas de aplicación fuera de su ámbito tradicional, caracterizadas por una mayor demanda computacional. Así, por ejemplo, algunos de estos sistemas deben llevar a cabo un intenso procesado de señales multimedia o la transmisión de datos mediante sistemas de comunicaciones de alta capacidad. Por otra parte, las condiciones de operación del sistema pueden variar en tiempo real. Esto sucede, por ejemplo, si su funcionamiento depende de datos medidos por el propio sistema o recibidos a través de la red, de las demandas del usuario en cada momento, o de condiciones internas del propio dispositivo, tales como la duración de la batería. Como consecuencia de la existencia de requisitos de operación dinámicos es necesario ir hacia una gestión dinámica de los recursos del sistema. Si bien el software es inherentemente flexible, no ofrece una potencia computacional tan alta como el hardware. Por lo tanto, el hardware reconfigurable aparece como una solución adecuada para tratar con mayor flexibilidad los requisitos variables dinámicamente en sistemas con alta demanda computacional. La flexibilidad y adaptabilidad del hardware requieren de dispositivos reconfigurables que permitan la modificación de su funcionalidad bajo demanda. En esta tesis se han seleccionado las FPGAs (Field Programmable Gate Arrays) como los dispositivos más apropiados, hoy en día, para implementar sistemas basados en hardware reconfigurable De entre todas las posibilidades existentes para explotar la capacidad de reconfiguración de las FPGAs comerciales, se ha seleccionado la reconfiguración dinámica y parcial. Esta técnica consiste en substituir una parte de la lógica del dispositivo, mientras el resto continúa en funcionamiento. La capacidad de reconfiguración dinámica y parcial de las FPGAs es empleada en esta tesis para tratar con los requisitos de flexibilidad y de capacidad computacional que demandan los dispositivos embebidos. La propuesta principal de esta tesis doctoral es el uso de arquitecturas de procesamiento escalables espacialmente, que son capaces de adaptar su funcionalidad y rendimiento en tiempo real, estableciendo un compromiso entre dichos parámetros y la cantidad de lógica que ocupan en el dispositivo. A esto nos referimos con arquitecturas con huellas escalables. En particular, se propone el uso de arquitecturas altamente paralelas, modulares, regulares y con una alta localidad en sus comunicaciones, para este propósito. El tamaño de dichas arquitecturas puede ser modificado mediante la adición o eliminación de algunos de los módulos que las componen, tanto en una dimensión como en dos. Esta estrategia permite implementar soluciones escalables, sin tener que contar con una versión de las mismas para cada uno de los tamaños posibles de la arquitectura. De esta manera se reduce significativamente el tiempo necesario para modificar su tamaño, así como la cantidad de memoria necesaria para almacenar todos los archivos de configuración. En lugar de proponer arquitecturas para aplicaciones específicas, se ha optado por patrones de procesamiento genéricos, que pueden ser ajustados para solucionar distintos problemas en el estado del arte. A este respecto, se proponen patrones basados en esquemas sistólicos, así como de tipo wavefront. Con el objeto de poder ofrecer una solución integral, se han tratado otros aspectos relacionados con el diseño y el funcionamiento de las arquitecturas, tales como el control del proceso de reconfiguración de la FPGA, la integración de las arquitecturas en el resto del sistema, así como las técnicas necesarias para su implementación. Por lo que respecta a la implementación, se han tratado distintos aspectos de bajo nivel dependientes del dispositivo. Algunas de las propuestas realizadas a este respecto en la presente tesis doctoral son un router que es capaz de garantizar el correcto rutado de los módulos reconfigurables dentro del área destinada para ellos, así como una estrategia para la comunicación entre módulos que no introduce ningún retardo ni necesita emplear recursos configurables del dispositivo. El flujo de diseño propuesto se ha automatizado mediante una herramienta denominada DREAMS. La herramienta se encarga de la modificación de las netlists correspondientes a cada uno de los módulos reconfigurables del sistema, y que han sido generadas previamente mediante herramientas comerciales. Por lo tanto, el flujo propuesto se entiende como una etapa de post-procesamiento, que adapta esas netlists a los requisitos de la reconfiguración dinámica y parcial. Dicha modificación la lleva a cabo la herramienta de una forma completamente automática, por lo que la productividad del proceso de diseño aumenta de forma evidente. Para facilitar dicho proceso, se ha dotado a la herramienta de una interfaz gráfica. El flujo de diseño propuesto, y la herramienta que lo soporta, tienen características específicas para abordar el diseño de las arquitecturas dinámicamente escalables propuestas en esta tesis. Entre ellas está el soporte para el realojamiento de módulos reconfigurables en posiciones del dispositivo distintas a donde el módulo es originalmente implementado, así como la generación de estructuras de comunicación compatibles con la simetría de la arquitectura. El router has sido empleado también en esta tesis para obtener un rutado simétrico entre nets equivalentes. Dicha posibilidad ha sido explotada para aumentar la protección de circuitos con altos requisitos de seguridad, frente a ataques de canal lateral, mediante la implantación de lógica complementaria con rutado idéntico. Para controlar el proceso de reconfiguración de la FPGA, se propone en esta tesis un motor de reconfiguración especialmente adaptado a los requisitos de las arquitecturas dinámicamente escalables. Además de controlar el puerto de reconfiguración, el motor de reconfiguración ha sido dotado de la capacidad de realojar módulos reconfigurables en posiciones arbitrarias del dispositivo, en tiempo real. De esta forma, basta con generar un único bitstream por cada módulo reconfigurable del sistema, independientemente de la posición donde va a ser finalmente reconfigurado. La estrategia seguida para implementar el proceso de realojamiento de módulos es diferente de las propuestas existentes en el estado del arte, pues consiste en la composición de los archivos de configuración en tiempo real. De esta forma se consigue aumentar la velocidad del proceso, mientras que se reduce la longitud de los archivos de configuración parciales a almacenar en el sistema. El motor de reconfiguración soporta módulos reconfigurables con una altura menor que la altura de una región de reloj del dispositivo. Internamente, el motor se encarga de la combinación de los frames que describen el nuevo módulo, con la configuración existente en el dispositivo previamente. El escalado de las arquitecturas de procesamiento propuestas en esta tesis también se puede beneficiar de este mecanismo. Se ha incorporado también un acceso directo a una memoria externa donde se pueden almacenar bitstreams parciales. Para acelerar el proceso de reconfiguración se ha hecho funcionar el ICAP por encima de la máxima frecuencia de reloj aconsejada por el fabricante. Así, en el caso de Virtex-5, aunque la máxima frecuencia del reloj deberían ser 100 MHz, se ha conseguido hacer funcionar el puerto de reconfiguración a frecuencias de operación de hasta 250 MHz, incluyendo el proceso de realojamiento en tiempo real. Se ha previsto la posibilidad de portar el motor de reconfiguración a futuras familias de FPGAs. Por otro lado, el motor de reconfiguración se puede emplear para inyectar fallos en el propio dispositivo hardware, y así ser capaces de evaluar la tolerancia ante los mismos que ofrecen las arquitecturas reconfigurables. Los fallos son emulados mediante la generación de archivos de configuración a los que intencionadamente se les ha introducido un error, de forma que se modifica su funcionalidad. Con el objetivo de comprobar la validez y los beneficios de las arquitecturas propuestas en esta tesis, se han seguido dos líneas principales de aplicación. En primer lugar, se propone su uso como parte de una plataforma adaptativa basada en hardware evolutivo, con capacidad de escalabilidad, adaptabilidad y recuperación ante fallos. En segundo lugar, se ha desarrollado un deblocking filter escalable, adaptado a la codificación de vídeo escalable, como ejemplo de aplicación de las arquitecturas de tipo wavefront propuestas. El hardware evolutivo consiste en el uso de algoritmos evolutivos para diseñar hardware de forma autónoma, explotando la flexibilidad que ofrecen los dispositivos reconfigurables. En este caso, los elementos de procesamiento que componen la arquitectura son seleccionados de una biblioteca de elementos presintetizados, de acuerdo con las decisiones tomadas por el algoritmo evolutivo, en lugar de definir la configuración de las mismas en tiempo de diseño. De esta manera, la configuración del core puede cambiar cuando lo hacen las condiciones del entorno, en tiempo real, por lo que se consigue un control autónomo del proceso de reconfiguración dinámico. Así, el sistema es capaz de optimizar, de forma autónoma, su propia configuración. El hardware evolutivo tiene una capacidad inherente de auto-reparación. Se ha probado que las arquitecturas evolutivas propuestas en esta tesis son tolerantes ante fallos, tanto transitorios, como permanentes y acumulativos. La plataforma evolutiva se ha empleado para implementar filtros de eliminación de ruido. La escalabilidad también ha sido aprovechada en esta aplicación. Las arquitecturas evolutivas escalables permiten la adaptación autónoma de los cores de procesamiento ante fluctuaciones en la cantidad de recursos disponibles en el sistema. Por lo tanto, constituyen un ejemplo de escalabilidad dinámica para conseguir un determinado nivel de calidad, que puede variar en tiempo real. Se han propuesto dos variantes de sistemas escalables evolutivos. El primero consiste en un único core de procesamiento evolutivo, mientras que el segundo está formado por un número variable de arrays de procesamiento. La codificación de vídeo escalable, a diferencia de los codecs no escalables, permite la decodificación de secuencias de vídeo con diferentes niveles de calidad, de resolución temporal o de resolución espacial, descartando la información no deseada. Existen distintos algoritmos que soportan esta característica. En particular, se va a emplear el estándar Scalable Video Coding (SVC), que ha sido propuesto como una extensión de H.264/AVC, ya que este último es ampliamente utilizado tanto en la industria, como a nivel de investigación. Para poder explotar toda la flexibilidad que ofrece el estándar, hay que permitir la adaptación de las características del decodificador en tiempo real. El uso de las arquitecturas dinámicamente escalables es propuesto en esta tesis con este objetivo. El deblocking filter es un algoritmo que tiene como objetivo la mejora de la percepción visual de la imagen reconstruida, mediante el suavizado de los "artefactos" de bloque generados en el lazo del codificador. Se trata de una de las tareas más intensivas en procesamiento de datos de H.264/AVC y de SVC, y además, su carga computacional es altamente dependiente del nivel de escalabilidad seleccionado en el decodificador. Por lo tanto, el deblocking filter ha sido seleccionado como prueba de concepto de la aplicación de las arquitecturas dinámicamente escalables para la compresión de video. La arquitectura propuesta permite añadir o eliminar unidades de computación, siguiendo un esquema de tipo wavefront. La arquitectura ha sido propuesta conjuntamente con un esquema de procesamiento en paralelo del deblocking filter a nivel de macrobloque, de tal forma que cuando se varía del tamaño de la arquitectura, el orden de filtrado de los macrobloques varia de la misma manera. El patrón propuesto se basa en la división del procesamiento de cada macrobloque en dos etapas independientes, que se corresponden con el filtrado horizontal y vertical de los bloques dentro del macrobloque. Las principales contribuciones originales de esta tesis son las siguientes: - El uso de arquitecturas altamente regulares, modulares, paralelas y con una intensa localidad en sus comunicaciones, para implementar cores de procesamiento dinámicamente reconfigurables. - El uso de arquitecturas bidimensionales, en forma de malla, para construir arquitecturas dinámicamente escalables, con una huella escalable. De esta forma, las arquitecturas permiten establecer un compromiso entre el área que ocupan en el dispositivo, y las prestaciones que ofrecen en cada momento. Se proponen plantillas de procesamiento genéricas, de tipo sistólico o wavefront, que pueden ser adaptadas a distintos problemas de procesamiento. - Un flujo de diseño y una herramienta que lo soporta, para el diseño de sistemas reconfigurables dinámicamente, centradas en el diseño de las arquitecturas altamente paralelas, modulares y regulares propuestas en esta tesis. - Un esquema de comunicaciones entre módulos reconfigurables que no introduce ningún retardo ni requiere el uso de recursos lógicos propios. - Un router flexible, capaz de resolver los conflictos de rutado asociados con el diseño de sistemas reconfigurables dinámicamente. - Un algoritmo de optimización para sistemas formados por múltiples cores escalables que optimice, mediante un algoritmo genético, los parámetros de dicho sistema. Se basa en un modelo conocido como el problema de la mochila. - Un motor de reconfiguración adaptado a los requisitos de las arquitecturas altamente regulares y modulares. Combina una alta velocidad de reconfiguración, con la capacidad de realojar módulos en tiempo real, incluyendo el soporte para la reconfiguración de regiones que ocupan menos que una región de reloj, así como la réplica de un módulo reconfigurable en múltiples posiciones del dispositivo. - Un mecanismo de inyección de fallos que, empleando el motor de reconfiguración del sistema, permite evaluar los efectos de fallos permanentes y transitorios en arquitecturas reconfigurables. - La demostración de las posibilidades de las arquitecturas propuestas en esta tesis para la implementación de sistemas de hardware evolutivos, con una alta capacidad de procesamiento de datos. - La implementación de sistemas de hardware evolutivo escalables, que son capaces de tratar con la fluctuación de la cantidad de recursos disponibles en el sistema, de una forma autónoma. - Una estrategia de procesamiento en paralelo para el deblocking filter compatible con los estándares H.264/AVC y SVC que reduce el número de ciclos de macrobloque necesarios para procesar un frame de video. - Una arquitectura dinámicamente escalable que permite la implementación de un nuevo deblocking filter, totalmente compatible con los estándares H.264/AVC y SVC, que explota el paralelismo a nivel de macrobloque. El presente documento se organiza en siete capítulos. En el primero se ofrece una introducción al marco tecnológico de esta tesis, especialmente centrado en la reconfiguración dinámica y parcial de FPGAs. También se motiva la necesidad de las arquitecturas dinámicamente escalables propuestas en esta tesis. En el capítulo 2 se describen las arquitecturas dinámicamente escalables. Dicha descripción incluye la mayor parte de las aportaciones a nivel arquitectural realizadas en esta tesis. Por su parte, el flujo de diseño adaptado a dichas arquitecturas se propone en el capítulo 3. El motor de reconfiguración se propone en el 4, mientras que el uso de dichas arquitecturas para implementar sistemas de hardware evolutivo se aborda en el 5. El deblocking filter escalable se describe en el 6, mientras que las conclusiones finales de esta tesis, así como la descripción del trabajo futuro, son abordadas en el capítulo 7. ABSTRACT The optimization of system parameters, such as power dissipation, the amount of hardware resources and the memory footprint, has been always a main concern when dealing with the design of resource-constrained embedded systems. This situation is even more demanding nowadays. Embedded systems cannot anymore be considered only as specific-purpose computers, designed for a particular functionality that remains unchanged during their lifetime. Differently, embedded systems are now required to deal with more demanding and complex functions, such as multimedia data processing and high-throughput connectivity. In addition, system operation may depend on external data, the user requirements or internal variables of the system, such as the battery life-time. All these conditions may vary at run-time, leading to adaptive scenarios. As a consequence of both the growing computational complexity and the existence of dynamic requirements, dynamic resource management techniques for embedded systems are needed. Software is inherently flexible, but it cannot meet the computing power offered by hardware solutions. Therefore, reconfigurable hardware emerges as a suitable technology to deal with the run-time variable requirements of complex embedded systems. Adaptive hardware requires the use of reconfigurable devices, where its functionality can be modified on demand. In this thesis, Field Programmable Gate Arrays (FPGAs) have been selected as the most appropriate commercial technology existing nowadays to implement adaptive hardware systems. There are different ways of exploiting reconfigurability in reconfigurable devices. Among them is dynamic and partial reconfiguration. This is a technique which consists in substituting part of the FPGA logic on demand, while the rest of the device continues working. The strategy followed in this thesis is to exploit the dynamic and partial reconfiguration of commercial FPGAs to deal with the flexibility and complexity demands of state-of-the-art embedded systems. The proposal of this thesis to deal with run-time variable system conditions is the use of spatially scalable processing hardware IP cores, which are able to adapt their functionality or performance at run-time, trading them off with the amount of logic resources they occupy in the device. This is referred to as a scalable footprint in the context of this thesis. The distinguishing characteristic of the proposed cores is that they rely on highly parallel, modular and regular architectures, arranged in one or two dimensions. These architectures can be scaled by means of the addition or removal of the composing blocks. This strategy avoids implementing a full version of the core for each possible size, with the corresponding benefits in terms of scaling and adaptation time, as well as bitstream storage memory requirements. Instead of providing specific-purpose architectures, generic architectural templates, which can be tuned to solve different problems, are proposed in this thesis. Architectures following both systolic and wavefront templates have been selected. Together with the proposed scalable architectural templates, other issues needed to ensure the proper design and operation of the scalable cores, such as the device reconfiguration control, the run-time management of the architecture and the implementation techniques have been also addressed in this thesis. With regard to the implementation of dynamically reconfigurable architectures, device dependent low-level details are addressed. Some of the aspects covered in this thesis are the area constrained routing for reconfigurable modules, or an inter-module communication strategy which does not introduce either extra delay or logic overhead. The system implementation, from the hardware description to the device configuration bitstream, has been fully automated by modifying the netlists corresponding to each of the system modules, which are previously generated using the vendor tools. This modification is therefore envisaged as a post-processing step. Based on these implementation proposals, a design tool called DREAMS (Dynamically Reconfigurable Embedded and Modular Systems) has been created, including a graphic user interface. The tool has specific features to cope with modular and regular architectures, including the support for module relocation and the inter-module communications scheme based on the symmetry of the architecture. The core of the tool is a custom router, which has been also exploited in this thesis to obtain symmetric routed nets, with the aim of enhancing the protection of critical reconfigurable circuits against side channel attacks. This is achieved by duplicating the logic with an exactly equal routing. In order to control the reconfiguration process of the FPGA, a Reconfiguration Engine suited to the specific requirements set by the proposed architectures was also proposed. Therefore, in addition to controlling the reconfiguration port, the Reconfiguration Engine has been enhanced with the online relocation ability, which allows employing a unique configuration bitstream for all the positions where the module may be placed in the device. Differently to the existing relocating solutions, which are based on bitstream parsers, the proposed approach is based on the online composition of bitstreams. This strategy allows increasing the speed of the process, while the length of partial bitstreams is also reduced. The height of the reconfigurable modules can be lower than the height of a clock region. The Reconfiguration Engine manages the merging process of the new and the existing configuration frames within each clock region. The process of scaling up and down the hardware cores also benefits from this technique. A direct link to an external memory where partial bitstreams can be stored has been also implemented. In order to accelerate the reconfiguration process, the ICAP has been overclocked over the speed reported by the manufacturer. In the case of Virtex-5, even though the maximum frequency of the ICAP is reported to be 100 MHz, valid operations at 250 MHz have been achieved, including the online relocation process. Portability of the reconfiguration solution to today's and probably, future FPGAs, has been also considered. The reconfiguration engine can be also used to inject faults in real hardware devices, and this way being able to evaluate the fault tolerance offered by the reconfigurable architectures. Faults are emulated by introducing partial bitstreams intentionally modified to provide erroneous functionality. To prove the validity and the benefits offered by the proposed architectures, two demonstration application lines have been envisaged. First, scalable architectures have been employed to develop an evolvable hardware platform with adaptability, fault tolerance and scalability properties. Second, they have been used to implement a scalable deblocking filter suited to scalable video coding. Evolvable Hardware is the use of evolutionary algorithms to design hardware in an autonomous way, exploiting the flexibility offered by reconfigurable devices. In this case, processing elements composing the architecture are selected from a presynthesized library of processing elements, according to the decisions taken by the algorithm, instead of being decided at design time. This way, the configuration of the array may change as run-time environmental conditions do, achieving autonomous control of the dynamic reconfiguration process. Thus, the self-optimization property is added to the native self-configurability of the dynamically scalable architectures. In addition, evolvable hardware adaptability inherently offers self-healing features. The proposal has proved to be self-tolerant, since it is able to self-recover from both transient and cumulative permanent faults. The proposed evolvable architecture has been used to implement noise removal image filters. Scalability has been also exploited in this application. Scalable evolvable hardware architectures allow the autonomous adaptation of the processing cores to a fluctuating amount of resources available in the system. Thus, it constitutes an example of the dynamic quality scalability tackled in this thesis. Two variants have been proposed. The first one consists in a single dynamically scalable evolvable core, and the second one contains a variable number of processing cores. Scalable video is a flexible approach for video compression, which offers scalability at different levels. Differently to non-scalable codecs, a scalable video bitstream can be decoded with different levels of quality, spatial or temporal resolutions, by discarding the undesired information. The interest in this technology has been fostered by the development of the Scalable Video Coding (SVC) standard, as an extension of H.264/AVC. In order to exploit all the flexibility offered by the standard, it is necessary to adapt the characteristics of the decoder to the requirements of each client during run-time. The use of dynamically scalable architectures is proposed in this thesis with this aim. The deblocking filter algorithm is the responsible of improving the visual perception of a reconstructed image, by smoothing blocking artifacts generated in the encoding loop. This is one of the most computationally intensive tasks of the standard, and furthermore, it is highly dependent on the selected scalability level in the decoder. Therefore, the deblocking filter has been selected as a proof of concept of the implementation of dynamically scalable architectures for video compression. The proposed architecture allows the run-time addition or removal of computational units working in parallel to change its level of parallelism, following a wavefront computational pattern. Scalable architecture is offered together with a scalable parallelization strategy at the macroblock level, such that when the size of the architecture changes, the macroblock filtering order is modified accordingly. The proposed pattern is based on the division of the macroblock processing into two independent stages, corresponding to the horizontal and vertical filtering of the blocks within the macroblock. The main contributions of this thesis are: - The use of highly parallel, modular, regular and local architectures to implement dynamically reconfigurable processing IP cores, for data intensive applications with flexibility requirements. - The use of two-dimensional mesh-type arrays as architectural templates to build dynamically reconfigurable IP cores, with a scalable footprint. The proposal consists in generic architectural templates, which can be tuned to solve different computational problems. •A design flow and a tool targeting the design of DPR systems, focused on highly parallel, modular and local architectures. - An inter-module communication strategy, which does not introduce delay or area overhead, named Virtual Borders. - A custom and flexible router to solve the routing conflicts as well as the inter-module communication problems, appearing during the design of DPR systems. - An algorithm addressing the optimization of systems composed of multiple scalable cores, which size can be decided individually, to optimize the system parameters. It is based on a model known as the multi-dimensional multi-choice Knapsack problem. - A reconfiguration engine tailored to the requirements of highly regular and modular architectures. It combines a high reconfiguration throughput with run-time module relocation capabilities, including the support for sub-clock reconfigurable regions and the replication in multiple positions. - A fault injection mechanism which takes advantage of the system reconfiguration engine, as well as the modularity of the proposed reconfigurable architectures, to evaluate the effects of transient and permanent faults in these architectures. - The demonstration of the possibilities of the architectures proposed in this thesis to implement evolvable hardware systems, while keeping a high processing throughput. - The implementation of scalable evolvable hardware systems, which are able to adapt to the fluctuation of the amount of resources available in the system, in an autonomous way. - A parallelization strategy for the H.264/AVC and SVC deblocking filter, which reduces the number of macroblock cycles needed to process the whole frame. - A dynamically scalable architecture that permits the implementation of a novel deblocking filter module, fully compliant with the H.264/AVC and SVC standards, which exploits the macroblock level parallelism of the algorithm. This document is organized in seven chapters. In the first one, an introduction to the technology framework of this thesis, specially focused on dynamic and partial reconfiguration, is provided. The need for the dynamically scalable processing architectures proposed in this work is also motivated in this chapter. In chapter 2, dynamically scalable architectures are described. Description includes most of the architectural contributions of this work. The design flow tailored to the scalable architectures, together with the DREAMs tool provided to implement them, are described in chapter 3. The reconfiguration engine is described in chapter 4. The use of the proposed scalable archtieectures to implement evolvable hardware systems is described in chapter 5, while the scalable deblocking filter is described in chapter 6. Final conclusions of this thesis, and the description of future work, are addressed in chapter 7.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a framework for the analysis of the decoding delay and communication latency in Multiview Video Coding. The application of this framework on MVC decoders allows minimizing the overall delay in immersive video-conference systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

HEVC es el nuevo estándar de codificación de vídeo que está siendo desarrollado conjuntamente por las organizaciones ITU-T Video Coding Experts Group (VCEG) e ISO/IEC Moving Picture Experts Group (MPEG). Su objetivo principal es mejorar la compresión de vídeo, en relación a los actuales estándares. Es común hoy en día, debido a su flexibilidad para aplicaciones de bajo consumo, diseñar sistemas de descodificación de vídeo basados en un procesador digital de señal (DSP). En la mayoría de las veces, los diseños parten de un código creado para ser ejecutado en un ordenador personal y posteriormente se optimizan para tecnología DSP. El objetivo principal de este proyecto es caracterizar el rendimiento de un sistema basado en DSP que ejecute el código de un descodificador de video HEVC. ABSTRACT. HEVC is a new video coding standard which is being developed by both ITU-T Video Coding Experts Group (VCEG) and ISO/IEC Moving Picture Experts Group (MPEG). Its main goal is to improve video compression, compared with the actual standards. It is common practice, because of the flexibility in low power applications, to design video decoding systems using digital signal processors (DSP). Most of the time, these designs start with a code suitable to be executed in personal computers and then it is optimized forDSP technology. The main goal in this final degree project is to characterize the performance of a DSP based system executing an HEVC video decoder.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose a new algorithm for the design of prediction structures with low delay and limited penalty in the rate-distortion performance for multiview video coding schemes. This algorithm constitutes one of the elements of a framework for the analysis and optimization of delay in multiview coding schemes that is based in graph theory. The objective of the algorithm is to find the best combination of prediction dependencies to prune from a multiview prediction structure, given a number of cuts. Taking into account the properties of the graph-based analysis of the encoding delay, the algorithm is able to find the best prediction dependencies to eliminate from an original prediction structure, while limiting the number of cut combinations to evaluate. We show that this algorithm obtains optimum results in the reduction of the encoding latency with a lower computational complexity than exhaustive search alternatives.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este proyecto se basa en la integración de funciones optimizadas de OpenHEVC en el códec Reconfigurable Video Coding (RVC) - High Efficiency Video Coding (HEVC). RVC es un framework capaz de generar automáticamente el código que implementa cualquier estándar de video mediante el uso de librerías. Estas librerías contienen la definición de bloques funcionales de los que se componen los distintos estándares de video a implementar. Sin embargo, como desventaja a la facilidad de creación de estándares utilizando este framework, las librerías que utiliza no se encuentran optimizadas. Por ello se pretende que el códec RVC-HEVC sea capaz de realizar llamadas a funciones optimizadas, que para el estudio éstas se encontrarán en la librería OpenHEVC. Por otro lado, estos codificadores de video se pueden encontrar implementados tanto en PCs como en sistemas embebidos. Los Digital Signal Processors (DSPs) son unas plataformas especializadas en el procesamiento digital, teniendo una alta velocidad en el cómputo de operaciones matemáticas. Por ello, para este proyecto se integrará RVC-HEVC con las llamadas a OpenHEVC en una plataforma DSP como la TMS320C6678. Una vez completa la integración se efectuan medidas de eficiencia para ver cómo las llamadas a funciones optimizadas mejoran la velocidad en la decodificación de imágenes. ABSTRACT. This project is based in the integration of optimized functions from OpenHEVC in the RVC-HEVC (Reconfigurable Video Coding- High Efficiency Video Coding) codec. RVC is a framework capable of generating automatically any type of video standard with the use of libraries. Inside these libraries there are the definitions of the functional blocks which make up the different standards, in which for the case of study will be the HEVC standard. Nevertheless, as a downside for the simplicity in producing standards with the RVC tool, these libraries are not optimized. Thus, one of the goals for the project will be to make the RVC-HEVC call optimized functions, in which in this case they will be inside the OpenHEVC library. On the other hand, these video encoders can be implemented both in PCs and embedded systems. The DSPs (Digital Signal Processors) are platforms specialized in digital processing, being able to compute mathematical operations in a short period of time. Consequently, for this project the integration of the RVC-HEVC with calls to the OpenHEVC library will be done in a DSP platform such as a TMS320C6678. Once completed the integration, performance measures will be carried out to evaluate the improvement in the decoding speed obtained when optimized functions are used by the RVC-HEVC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Se va a realizar un estudio de la codificación de imágenes sobre el estándar HEVC (high-effiency video coding). El proyecto se va a centrar en el codificador híbrido, más concretamente sobre la aplicación de la transformada inversa del coseno que se realiza tanto en codificador como en el descodificador. La necesidad de codificar vídeo surge por la aparición de la secuencia de imágenes como señales digitales. El problema principal que tiene el vídeo es la cantidad de bits que aparecen al realizar la codificación. Como consecuencia del aumento de la calidad de las imágenes, se produce un crecimiento exponencial de la cantidad de información a codificar. La utilización de las transformadas al procesamiento digital de imágenes ha aumentado a lo largo de los años. La transformada inversa del coseno se ha convertido en el método más utilizado en el campo de la codificación de imágenes y video. Las ventajas de la transformada inversa del coseno permiten obtener altos índices de compresión a muy bajo coste. La teoría de las transformadas ha mejorado el procesamiento de imágenes. En la codificación por transformada, una imagen se divide en bloques y se identifica cada imagen a un conjunto de coeficientes. Esta codificación se aprovecha de las dependencias estadísticas de las imágenes para reducir la cantidad de datos. El proyecto realiza un estudio de la evolución a lo largo de los años de los distintos estándares de codificación de video. Se analiza el codificador híbrido con más profundidad así como el estándar HEVC. El objetivo final que busca este proyecto fin de carrera es la realización del núcleo de un procesador específico para la ejecución de la transformada inversa del coseno en un descodificador de vídeo compatible con el estándar HEVC. Es objetivo se logra siguiendo una serie de etapas, en las que se va añadiendo requisitos. Este sistema permite al diseñador hardware ir adquiriendo una experiencia y un conocimiento más profundo de la arquitectura final. ABSTRACT. A study about the codification of images based on the standard HEVC (high-efficiency video coding) will be developed. The project will be based on the hybrid encoder, in particular, on the application of the inverse cosine transform, which is used for the encoder as well as for the decoder. The necessity of encoding video arises because of the appearance of the sequence of images as digital signals. The main problem that video faces is the amount of bits that appear when making the codification. As a consequence of the increase of the quality of the images, an exponential growth on the quantity of information that should be encoded happens. The usage of transforms to the digital processing of images has increased along the years. The inverse cosine transform has become the most used method in the field of codification of images and video. The advantages of the inverse cosine transform allow to obtain high levels of comprehension at a very low price. The theory of the transforms has improved the processing of images. In the codification by transform, an image is divided in blocks and each image is identified to a set of coefficients. This codification takes advantage of the statistic dependence of the images to reduce the amount of data. The project develops a study of the evolution along the years of the different standards in video codification. In addition, the hybrid encoder and the standard HEVC are analyzed more in depth. The final objective of this end of degree project is the realization of the nucleus from a specific processor for the execution of the inverse cosine transform in a decoder of video that is compatible with the standard HEVC. This objective is reached following a series of stages, in which requirements are added. This system allows the hardware designer to acquire a deeper experience and knowledge of the final architecture.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En este Proyecto Fin de Grado se ha realizado un estudio de cómo generar, a partir de modelos de flujo de datos en RVC-CAL (Reconfigurable Video Coding – CAL Actor Language), modelos VHDL (Versatile Hardware Description Language) mediante Vivado HLS (Vivado High Level Synthesis), incluida en las herramientas disponibles en Vivado de Xilinx. Una vez conseguido el modelo VHDL resultante, la intención es que mediante las herramientas de Xilinx se programe en una FPGA (Field Programmable Gate Array) o el dispositivo Zynq también desarrollado por Xilinx. RVC-CAL es un lenguaje de flujo de datos que describe la funcionalidad de bloques funcionales, denominados actores. Las funcionalidades que desarrolla un actor se definen como acciones, las cuales pueden ser diferentes en un mismo actor. Los actores pueden comunicarse entre sí y formar una red de actores o network. Con Vivado HLS podemos obtener un diseño VHDL a partir de un modelo en lenguaje C. Por lo que la generación de modelos en VHDL a partir de otros en RVC-CAL, requiere una fase previa en la que los modelos en RVC-CAL serán compilados para conseguir su equivalente en lenguaje C. El compilador ORCC (Open RVC-CAL Compiler) es la herramienta que nos permite lograr diseños en lenguaje C partiendo de modelos en RVC-CAL. ORCC no crea directamente el código ejecutable, sino que genera un código fuente disponible para ser compilado por otra herramienta, en el caso de este proyecto, el compilador GCC (Gnu C Compiler) de Linux. En resumen en este proyecto nos encontramos con tres puntos de estudio bien diferenciados, los cuales son: 1. Partimos de modelos de flujo de datos en RVC-CAL, los cuales son compilados por ORCC para alcanzar su traducción en lenguaje C. 2. Una vez conseguidos los diseños equivalentes en lenguaje C, son sintetizados en Vivado HLS para conseguir los modelos en VHDL. 3. Los modelos VHDL resultantes serian manipulados por las herramientas de Xilinx para producir el bitstream que sea programado en una FPGA o en el dispositivo Zynq. En el estudio del segundo punto, nos encontramos con una serie de elementos conflictivos que afectan a la síntesis en Vivado HLS de los diseños en lenguaje C generados por ORCC. Estos elementos están relacionados con la manera que se encuentra estructurada la especificación en C generada por ORCC y que Vivado HLS no puede soportar en determinados momentos de la síntesis. De esta manera se ha propuesto una transformación “manual” de los diseños generados por ORCC que afecto lo menos posible a los modelos originales para poder realizar la síntesis con Vivado HLS y crear el fichero VHDL correcto. De esta forma este documento se estructura siguiendo el modelo de un trabajo de investigación. En primer lugar, se exponen las motivaciones y objetivos que apoyan y se esperan lograr en este trabajo. Seguidamente, se pone de manifiesto un análisis del estado del arte de los elementos necesarios para el desarrollo del mismo, proporcionando los conceptos básicos para la correcta comprensión y estudio del documento. Se realiza una descripción de los lenguajes RVC-CAL y VHDL, además de una introducción de las herramientas ORCC y Vivado, analizando las bondades y características principales de ambas. Una vez conocido el comportamiento de ambas herramientas, se describen las soluciones desarrolladas en nuestro estudio de la síntesis de modelos en RVC-CAL, poniéndose de manifiesto los puntos conflictivos anteriormente señalados que Vivado HLS no puede soportar en la síntesis de los diseños en lenguaje C generados por el compilador ORCC. A continuación se presentan las soluciones propuestas a estos errores acontecidos durante la síntesis, con las cuales se pretende alcanzar una especificación en C más óptima para una correcta síntesis en Vivado HLS y alcanzar de esta forma los modelos VHDL adecuados. Por último, como resultado final de este trabajo se extraen un conjunto de conclusiones sobre todos los análisis y desarrollos acontecidos en el mismo. Al mismo tiempo se proponen una serie de líneas futuras de trabajo con las que se podría continuar el estudio y completar la investigación desarrollada en este documento. ABSTRACT. In this Project it has made a study of how to generate, from data flow models in RVC-CAL (Reconfigurable Video Coding - Actor CAL Language), VHDL models (Versatile Hardware Description Language) by Vivado HLS (Vivado High Level Synthesis), included in the tools available in Vivado of Xilinx. Once achieved the resulting VHDL model, the intention is that by the Xilinx tools programmed in FPGA or Zynq device also developed by Xilinx. RVC-CAL is a dataflow language that describes the functionality of functional blocks, called actors. The functionalities developed by an actor are defined as actions, which may be different in the same actor. Actors can communicate with each other and form a network of actors. With Vivado HLS we can get a VHDL design from a model in C. So the generation of models in VHDL from others in RVC-CAL requires a preliminary phase in which the models RVC-CAL will be compiled to get its equivalent in C. The compiler ORCC (Open RVC-CAL Compiler) is the tool that allows us to achieve designs in C language models based on RVC-CAL. ORCC not directly create the executable code but generates an available source code to be compiled by another tool, in the case of this project, the GCC compiler (GNU C Compiler) of Linux. In short, in this project we find three well-defined points of study, which are: 1. We start from data flow models in RVC-CAL, which are compiled by ORCC to achieve its translation in C. 2. Once you realize the equivalent designs in C, they are synthesized in Vivado HLS for VHDL models. 3. The resulting models VHDL would be manipulated by Xilinx tools to produce the bitstream that is programmed into an FPGA or Zynq device. In the study of the second point, we find a number of conflicting elements that affect the synthesis Vivado HLS designs in C generated by ORCC. These elements are related to the way it is structured specification in C generated ORCC and Vivado HLS cannot hold at certain times of the synthesis. Thus it has proposed a "manual" transformation of designs generated by ORCC that affected as little as possible to the original in order to perform the synthesis Vivado HLS and create the correct file VHDL models. Thus this document is structured along the lines of a research. First, the motivations and objectives that support and hope to reach in this work are presented. Then it shows an analysis the state of the art of the elements necessary for its development, providing the basics for a correct understanding and study of the document. A description of the RVC-CAL and VHDL languages is made, in addition an introduction of the ORCC and Vivado tools, analyzing the advantages and main features of both. Once you know the behavior of both tools, the solutions developed in our study of the synthesis of RVC-CAL models, introducing the conflicting points mentioned above are described that Vivado HLS cannot stand in the synthesis of design in C language generated by ORCC compiler. Below the proposed solutions to these errors occurred during synthesis, with which it is intended to achieve optimum C specification for proper synthesis Vivado HLS and thus create the appropriate VHDL models are presented. Finally, as the end result of this work a set of conclusions on all analyzes and developments occurred in the same are removed. At the same time a series of future lines of work which could continue to study and complete the research developed in this document are proposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As digital systems move away from traditional desktop setups, new interaction paradigms are emerging that better integrate with users’ realworld surroundings, and better support users’ individual needs. While promising, these modern interaction paradigms also present new challenges, such as a lack of paradigm-specific tools to systematically evaluate and fully understand their use. This dissertation tackles this issue by framing empirical studies of three novel digital systems in embodied cognition – an exciting new perspective in cognitive science where the body and its interactions with the physical world take a central role in human cognition. This is achieved by first, focusing the design of all these systems on a contemporary interaction paradigm that emphasizes physical interaction on tangible interaction, a contemporary interaction paradigm; and second, by comprehensively studying user performance in these systems through a set of novel performance metrics grounded on epistemic actions, a relatively well established and studied construct in the literature on embodied cognition. The first system presented in this dissertation is an augmented Four-in-a-row board game. Three different versions of the game were developed, based on three different interaction paradigms (tangible, touch and mouse), and a repeated measures study involving 36 participants measured the occurrence of three simple epistemic actions across these three interfaces. The results highlight the relevance of epistemic actions in such a task and suggest that the different interaction paradigms afford instantiation of these actions in different ways. Additionally, the tangible version of the system supports the most rapid execution of these actions, providing novel quantitative insights into the real benefits of tangible systems. The second system presented in this dissertation is a tangible tabletop scheduling application. Two studies with single and paired users provide several insights into the impact of epistemic actions on the user experience when these are performed outside of a system’s sensing boundaries. These insights are clustered by the form, size and location of ideal interface areas for such offline epistemic actions to occur, as well as how can physical tokens be designed to better support them. Finally, and based on the results obtained to this point, the last study presented in this dissertation directly addresses the lack of empirical tools to formally evaluate tangible interaction. It presents a video-coding framework grounded on a systematic literature review of 78 papers, and evaluates its value as metric through a 60 participant study performed across three different research laboratories. The results highlight the usefulness and power of epistemic actions as a performance metric for tangible systems. In sum, through the use of such novel metrics in each of the three studies presented, this dissertation provides a better understanding of the real impact and benefits of designing and developing systems that feature tangible interaction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta dissertação apresenta um trabalho sobre codificação de vídeo 3D compatível com vídeo 2D. Tem por base o desenvolvimento de um método para melhorar, no descodificador, a reconstrução de uma vista subamostrada resultante de uma transmissão simulcast usando a norma de codificação de vídeo H.265 (informalmente denominada de High Efficiency Video Coding (HEVC)). Apesar de manter a compatibilidade com vídeo 2D a transmissão simulcast normalmente requer uma taxa de transmissão elevada. Na ausência de ferramentas de codificação 3D adequadas é possível reduzir a taxa de transmissão utilizando compressão assimétrica do vídeo, onde a vista base é codificada com a resolução espacial original, enquanto que a vista auxiliar é codificada com uma resolução espacial menor, sendo sobreamostrada no descodificador. O método desenvolvido visa melhorar a vista auxiliar sobreamostrada no descodificador utilizando informação dos detalhes da vista base, ou seja, as componentes de alta frequência. Este processo depende de transformadas Afim para realizar um mapeamento geométrico entre a informação de alta frequência da vista base de resolução completa e a vista auxiliar de menor resolução. Adicionalmente, de modo a manter a continuidade do conteúdo da imagem entre regiões, evitando artefatos de blocos, o mapeamento utiliza uma malha de triangulação da vista auxiliar aplicado à imagem de detalhes obtida a partir da vista base. A técnica proposta é comparada com um método de estimação de disparidade por correspondência de blocos, sendo que os resultados mostram que para algumas sequências a técnica desenvolvida melhora não só a qualidade objetiva (PSNR) até 2.2 dB, mas também a qualidade subjetiva, para a mesma taxa de compressão global.