54 resultados para Vibrios


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thesis is comprised of seven chapters. Chapter 1 gives a general introduction to marine actinomycetes; Chapter 2 gives an account on the morphological, biochemical and physiological characterization of marine actinomycetes. Comprehensive description of molecular identification and phylogenetic analysis of actinomycetes is dealt with in Chapter 3. The antimicrobial property with special reference to antivibrio activity is described in Chapter 4. Chapter 5 explores the melanin production ability of marine actinomycetes, characterization of melanin and evaluation of its bioactivity. Chapter 6 illustrates the study on chitinolytic Streptomyces as antifungal and insecticidal agents. Summary and Conclusion of the study is presented in Chapter 7, followed by References and Appendices.The present study provides an insight into the various actinomycetes occurring in the sediments of Arabian Sea and Bay of Bengal. Streptomyces was found to be the dominant group followed by Nocardiopsis. Eventhough generic level identification is possible by traditional phenotypic methods, species level identification necessitate a polyphasic approach including both phenotypic and genotypic characterization. Antibiotic production coupled with biogranulation property helped in the effective utilization of the actinomycetes for the control of vibrios. Melanin from Streptomyces bikiniensis was proved to be a promising antioxidant and photoprotectant. Marine actinomycetes were found to be a good source of hydrolytic enzymes and the chitinolytic isolates could be explored as biocontrol agents in terms of antifungal and insecticidal property. The present study explored the potential of marine actinomycetes especially Streptomycetes as a promising source of bioactive molecules for application in aquaculture and pharmaceutical industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genus Vibrioof the family Vibrionaceae are Gram negative, oxidasepositive, rod- or curved- rodshaped facultative anaerobes, widespread in marine and estuarine environments. Vibrio species are opportunistic human pathogens responsible for diarrhoeal disease, gastroenteritis, septicaemia and wound infections and are also pathogens of aquatic organisms, causing infections to crustaceans, bivalves and fishes. In the present study, marine environmental samples like seafood and water and sediment samples from aquafarms and mangroves were screened for the presence of Vibrio species. Of the134 isolates obtained from the various samples, 45 were segregated to the genus Vibrio on the basis of phenotypic characterization.like Gram staining, oxidase test, MoF test and salinity tolerance. Partial 16S rDNA sequence analysis was utilized for species level identification of the isolates and the strains were identified as V. cholerae(N=21), V. vulnificus(N=18), V. parahaemolyticus(N=3), V. alginolyticus (N=2) and V. azureus (N=1). The genetic relatedness and variations among the 45 Vibrio isolates were elucidated based on 16S rDNA sequences. Phenotypic characterization of the isolates was based on their response to 12 biochemical tests namely Voges-Proskauers’s (VP test), arginine dihydrolase , tolerance to 3% NaCl test, ONPG test that detects β-galactosidase activity, and tests for utilization of citrate, ornithine, mannitol, arabinose, sucrose, glucose, salicin and cellobiose. The isolates exhibited diverse biochemical patterns, some specific for the species and others indicative of their environmental source.Antibiogram for the isolates was determined subsequent to testing their susceptibility to 12 antibiotics by the disc diffusion method. Varying degrees of resistance to gentamycin (2.22%), ampicillin(62.22%), nalidixic acid (4.44%), vancomycin (86.66), cefixime (17.77%), rifampicin (20%), tetracycline (42.22%) and chloramphenicol (2.22%) was exhibited. All the isolates were susceptible to streptomycin, co-trimoxazole, trimethoprim and azithromycin. Isolates from all the three marine environments exhibited multiple antibiotic resistance, with high MAR index value. The molecular typing methods such as ERIC PCR and BOX PCR revealed intraspecies relatedness and genetic heterogeneity within the environmental isolatesof V. cholerae and V. vulnificus. The 21 strains of V. choleraewere serogroupedas non O1/ non O139 by screening for the presence O1rfb and O139 rfb marker genes by PCR. The virulence/virulence associated genes namely ctxA, ctxB, ace, VPI, hlyA, ompU, rtxA, toxR, zot, nagst, tcpA, nin and nanwere screened in V. cholerae and V. vulnificusstrains.The V. vulnificusstrains were also screened for three species specific genes viz., cps, vvhand viu. In V. cholerae strains, the virulence associated genes like VPI, hlyA, rtxA, ompU and toxR were confirmed by PCR. All the isolates, except for strain BTOS6, harbored at least one or a combination of the tested genes and V. choleraestrain BTPR5 isolated from prawn hosted the highest number of virulence associated genes. Among the V. vulnificusstrains, only 3 virulence genes, VPI, toxR and cps, were confirmed out of the 16 tested and only 7 of the isolates had these genes in one or more combinations. Strain BTPS6 from aquafarm and strain BTVE4 from mangrove samples yielded positive amplification for the three genes. The toxRgene from 9 strains of V. choleraeand 3 strains of V. vulnificus were cloned and sequenced for phylogenetic analysis based on nucleotide and the amino acid sequences. Multiple sequence alignment of the nucleotide sequences and amino acid sequences of the environmental strains of V. choleraerevealed that the toxRgene in the environmental strains are 100% homologous to themselves and to the V. choleraetoxR gene sequence available in the Genbank database. The 3 strains of V. vulnificus displayed high nucleotide and amino acid sequence similarity among themselves and to the sequences of V. cholerae and V. harveyi obtained from the GenBank database, but exhibited only 72% homology to the sequences of its close relative V. vulnificus. Structure prediction of the ToxR protein of Vibrio cholerae strain BTMA5 was by PHYRE2 software. The deduced amino acid sequence showed maximum resemblance with the structure of DNA-binding domain of response regulator2 from Escherichia coli k-12 Template based homology modelling in PHYRE2 successfully modelled the predicted protein and its secondary structure based on protein data bank (PDB) template c3zq7A. The pathogenicity studies were performed using the nematode Caenorhabditiselegansas a model system. The assessment of pathogenicity of environmental strain of V. choleraewas conducted with E. coli strain OP50 as the food source in control plates, environmental V. cholerae strain BTOS6, negative for all tested virulence genes, to check for the suitability of Vibrio sp. as a food source for the nematode;V. cholerae Co 366 ElTor, a clinical pathogenic strain and V. cholerae strain BTPR5 from seafood (Prawn) and positive for the tested virulence genes like VPI, hlyA, ompU,rtxA and toxR. It was found that V. cholerae strain BTOS6 could serve as a food source in place of E. coli strain OP50 but behavioral aberrations like sluggish movement and lawn avoidance and morphological abnormalities like pharyngeal and intestinal distensions and bagging were exhibited by the worms fed on V. cholerae Co 366 ElTor strain and environmental BTPR5 indicating their pathogenicity to the nematode. Assessment of pathogenicity of the environmental strains of V. vulnificus was performed with V. vulnificus strain BTPS6 which tested positive for 3 virulence genes, namely, cps, toxRand VPI, and V. vulnificus strain BTMM7 that did not possess any of the tested virulence genes. A reduction was observed in the life span of worms fed on environmental strain of V. vulnificusBTMM7 rather than on the ordinary laboratory food source, E. coli OP50. Behavioral abnormalities like sluggish movement, lawn avoidance and bagging were also observed in the worms fed with strain BTPS6, but the pharynx and the intestine were intact. The presence of multi drug resistant environmental Vibrio strainsthat constitute a major reservoir of diverse virulence genes are to be dealt with caution as they play a decisive role in pathogenicity and horizontal gene transfer in the marine environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The resurgence of the enteric pathogen Vibrio cholerae, the causative organism of epidemic cholera, remains a major health problem in many developing countries like India. The southern Indian state of Kerala is endemic to cholera. The outbreaks of cholera follow a seasonal pattern in regions of endemicity. Marine aquaculture settings and mangrove environments of Kerala serve as reservoirs for V. cholerae. The non-O1/non-O139 environmental isolates of V. cholerae with incomplete ‘virulence casette’ are to be dealt with caution as they constitute a major reservoir of diverse virulence genes in the marine environment and play a crucial role in pathogenicity and horizontal gene transfer. The genes coding cholera toxin are borne on, and can be infectiously transmitted by CTXΦ, a filamentous lysogenic vibriophages. Temperate phages can provide crucial virulence and fitness factors affecting cell metabolism, bacterial adhesion, colonization, immunity, antibiotic resistance and serum resistance. The present study was an attempt to screen the marine environments like aquafarms and mangroves of coastal areas of Alappuzha and Cochin, Kerala for the presence of lysogenic V. cholerae, to study their pathogenicity and also gene transfer potential. Phenotypic and molecular methods were used for identification of isolates as V. cholerae. The thirty one isolates which were Gram negative, oxidase positive, fermentative, with or without gas production on MOF media and which showed yellow coloured colonies on TCBS (Thiosulfate Citrate Bile salt Sucrose) agar were segregated as vibrios. Twenty two environmental V. cholerae strains of both O1 and non- O1/non-O139 serogroups on induction with mitomycin C showed the presence of lysogenic phages. They produced characteristic turbid plaques in double agar overlay assay using the indicator strain V. cholerae El Tor MAK 757. PCR based molecular typing with primers targeting specific conserved sequences in the bacterial genome, demonstrated genetic diversity among these lysogen containing non-O1 V. cholerae . Polymerase chain reaction was also employed as a rapid screening method to verify the presence of 9 virulence genes namely, ctxA, ctxB, ace, hlyA, toxR, zot,tcpA, ninT and nanH, using gene specific primers. The presence of tcpA gene in ALPVC3 was alarming, as it indicates the possibility of an epidemic by accepting the cholera. Differential induction studies used ΦALPVC3, ΦALPVC11, ΦALPVC12 and ΦEKM14, underlining the possibility of prophage induction in natural ecosystems, due to abiotic factors like antibiotics, pollutants, temperature and UV. The efficiency of induction of prophages varied considerably in response to the different induction agents. The growth curve of lysogenic V. cholerae used in the study drastically varied in the presence of strong prophage inducers like antibiotics and UV. Bacterial cell lysis was directly proportional to increase in phage number due to induction. Morphological characterization of vibriophages by Transmission Electron Microscopy revealed hexagonal heads for all the four phages. Vibriophage ΦALPVC3 exhibited isometric and contractile tails characteristic of family Myoviridae, while phages ΦALPVC11 and ΦALPVC12 demonstrated the typical hexagonal head and non-contractile tail of family Siphoviridae. ΦEKM14, the podophage was distinguished by short non-contractile tail and icosahedral head. This work demonstrated that environmental parameters can influence the viability and cell adsorption rates of V. cholerae phages. Adsorption studies showed 100% adsorption of ΦALPVC3 ΦALPVC11, ΦALPVC12 and ΦEKM14 after 25, 30, 40 and 35 minutes respectively. Exposure to high temperatures ranging from 50ºC to 100ºC drastically reduced phage viability. The optimum concentration of NaCl required for survival of vibriophages except ΦEKM14 was 0.5 M and that for ΦEKM14 was 1M NaCl. Survival of phage particles was maximum at pH 7-8. V. cholerae is assumed to have existed long before their human host and so the pathogenic clones may have evolved from aquatic forms which later colonized the human intestine by progressive acquisition of genes. This is supported by the fact that the vast majority of V. cholerae strains are still part of the natural aquatic environment. CTXΦ has played a critical role in the evolution of the pathogenicity of V. cholerae as it can transmit the ctxAB gene. The unusual transformation of V. cholerae strains associated with epidemics and the emergence of V. cholera O139 demonstrates the evolutionary success of the organism in attaining greater fitness. Genetic changes in pathogenic V. cholerae constitute a natural process for developing immunity within an endemically infected population. The alternative hosts and lysogenic environmental V. cholerae strains may potentially act as cofactors in promoting cholera phage ‘‘blooms’’ within aquatic environments, thereby influencing transmission of phage sensitive, pathogenic V. cholerae strains by aquatic vehicles. Differential induction of the phages is a clear indication of the impact of environmental pollution and global changes on phage induction. The development of molecular biology techniques offered an accessible gateway for investigating the molecular events leading to genetic diversity in the marine environment. Using nucleic acids as targets, the methods of fingerprinting like ERIC PCR and BOX PCR, revealed that the marine environment harbours potentially pathogenic group of bacteria with genetic diversity. The distribution of virulence associated genes in the environmental isolates of V. cholerae provides tangible material for further investigation. Nucleotide and protein sequence analysis alongwith protein structure prediction aids in better understanding of the variation inalleles of same gene in different ecological niche and its impact on the protein structure for attaining greater fitness of pathogens. The evidences of the co-evolution of virulence genes in toxigenic V. cholerae O1 from different lineages of environmental non-O1 strains is alarming. Transduction studies would indicate that the phenomenon of acquisition of these virulence genes by lateral gene transfer, although rare, is not quite uncommon amongst non-O1/non-O139 V. cholerae and it has a key role in diversification. All these considerations justify the need for an integrated approach towards the development of an effective surveillance system to monitor evolution of V. cholerae strains with epidemic potential. Results presented in this study, if considered together with the mechanism proposed as above, would strongly suggest that the bacteriophage also intervenes as a variable in shaping the cholera bacterium, which cannot be ignored and hinting at imminent future epidemics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monoclonal antibodies were developed against pathogenic vibrios for use in rapid identification in disease situations of humans, fish and shellfish. Of the 12 fusions performed using V. alginolyticus, V. anguillarum, V. carchariae, V. cholerae, V. damsela, V. furnissii, V. harveyi, V. ordalii, V. parahaemolyticus and V. vulnificus, a total of 102 hybridomas were obtained. Based on cross-reactivity of a wide range of Vibrio strains and other gram-negative bacteria, three broad types of monoclonal antibodies were found. The three categories were: (1) ones that were species-specific or specific to a particular surface antigen, (2) a large number that reacted with several Vibrio species, and (3) three that reacted with most Vibrio strains but no other gram-negative bacteria. Each species-specific monoclonal antibody only recognized its corresponding Vibrio species and was used for identifying unknown species, confirming diagnosis of clinical isolates. In addition, several monoclonal antibodies only cross-reacted with similar Vibrio species, e.g. V. parahaemolyticus and V. alginolyticus which share a common H-antigen. Monoclonal antibodies reacting with several Vibrio species were not of particular use in diagnostic situations. Three monoclonal antibodies of the last group did not react with other genera of the family Vibrionaceae, namely Aeromonas, Photobacterium and Plesiomonas nor a wide range of gram-negative enteric bacteria. These data indicated the existence of an antigenic surface determinant common to Vibrio species. One monoclonal reacted with the heat-stable antigenic determinants on the cell surface as v as lipopolysaccharide extracted from all the vibrios studied, thus making it useful for large- scale screening of acute infections of vibrios. In a blind test, seven Vibrio species, isolated from 6 marine and a freshwater source were identified by two laboratories using phenetic tests. Results of immunotyping using monoclonals, three of seven were diagnosed as the same species, another three were designated as Vibrio species but could not be classified further due to the library not having the corresponding monoclonal, and one was diagnostically questionable. Two further tests were carried out. An unknown Vibrio formalin-fixed isolated from diseased marine animal was identified as V. parahaemolyticus by ELISA and FITC. Clinical human isolates of V. alginolyticus, V. parahaemolyticus and V. vulnificus were confirmed by monoclonals. Australian isolates of V. anguillarum appeared to be mostly of serotype O1. monoclonals raised to V. anguillarum AFHRL 1 reacted with only serotype O1 from Denmark but also most Australian isolates. All vibrios pathogenic to fish and shellfish, i.e. V. anguillarum, V. ordalii, V. alginolyticus, V. carchariae, V. cholerae, V. damsela, V. harveyi, V. parahaemolyticus and V. vulnificus, were used for attachment studies to fish cells using phase contrast and FITC-immunofluorescence microscopy. Of these vibrios, V. anguillarum, V. ordalii and V. perahaemolyticus, were found to adhere to different cells and tissues of rainbow trout while others did not appear to attach. However, attachment was inhibited by monoclonal antibodies specific to only these three vibrios. Lipopolysaccharide is well known as being a contributing factor in pathogenicity of gram-negative bacteria. PAGE electrophoresis of extracted LPS from 9 strains covering 6 Vibrio species showed the presence of a common 15,000 D fragment. This fragment was verified by immunoblotting with a genus-specific monoclonal antibody (i.e. F11P411F) recognizing nearly all vibrios. The common LPS fragment was separated and used to raise polyclonal antisera in mouse which reacted strongly with LPS itself, live as well as sodium azide-killed vibrios, but not with other gram-negative bacteria. This raised the possibility of developing vaccine from Vibrio LPS. Monoclonal antibodies developed in the present study enabled rapid identification of a number of pathogenic Vibrio species. There is still further work to produce monoclonal antibodies against additional vibrios that are probably pathogenic. These included V. fluvialis, V. hollisae, V. metschnikovii, V. minicus, V. salmonella and V. tubiashii. Together the application will be of significance in clinical diagnostic work, in the monitoring of vibriosis in fish farms and in quarantine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O V.cholerae é um microorganismo autóctone do ambiente aquático e os sorogrupos O1 e O 139 estão ligados a pandemia e epidemia de cólera. Os V.cholerae não O1 e não O139 ou vibrios não aglutinantes (NAGs) estão envolvidos em casos isolados e surtos de diarréia semelhantes à cólera. No decorrer da sétima pandemia houve o surgimento de diversos isolados “El Tor atípicos”. Entre estes se encontra a variante bioquímica do V.cholerae O1 que não fermenta a sacarose no TCBS em 18 a 24 horas que é o tempo de incubação convencional. Neste trabalho foram estudados 138 isolados de V.cholerae O1 e não O1 não fermentador da sacarose no TCBS de procedência clínica e ambiental, obtidos entre 1994 e 1995 na Amazônia Brasileira (Estados do Pará, Amapá e Amazonas). Avaliou-se a fermentação da sacarose no TCBS e em caldo; o perfil de suscetibilidade a oito diferentes antimicrobianos em ágar difusão; a relação clonal entre os V.cholerae O1 e NAG clínicos e ambientais pelo PFGE e a presença de genes de virulência ctxAB e tcpA pela reação em cadeia da polimerase. Observou-se que as amostras de V.cholerae não fermentaram a sacarose em 24 de incubação no ágar TCBS e em caldo, 43% utilizaram a sacarose em 24 horas e 57% a fermentavam tardiamente (tempo superior a 24 horas). Os isolados apresentaram baixo percentual de resistência a antimicrobianos (8,7%) e nenhum caso de multiresistência. Em relação aos genes de virulência, de um modo geral, os isolados de V.cholerae O1 apresentavam o tcpA e o ctxAB. Nos não O1 estes estavam ausentes, com exceção de um isolado clínico não O1 (gene tcpA+). A análise do PFGE revelou pulsotipos distintos entre os O1 e NAGs, embora dois destes últimos tenham apresentado relação clonal com os O1 clínicos. Todos os O1 clínicos apresentaram relação clonal com isolados de referência da sétima pandemia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

No Abstract

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se utilizó al grupo de bacterias coliformes totales, fecales, Escherichia coli, el recuento de bacterias heterótrofas, la presencia – ausencia de los géneros Pseudomonas y Vibrios para determinar la calidad microbiológica del agua de las playas El Tunco y El Sunzal ubicadas en el departamento de La Libertad. Se realizaron 3 muestreos en cada una de las playas durante los meses de septiembre a diciembre del 2011, abarcando el final de la época lluviosa, la transición y el inicio de la época seca. En total se obtuvieron 54 muestras de agua, 27 por playa. Se estableció una red de estaciones ubicadas en cada sitio de muestreo, 3 por playa y cada estación se muestreo 3 puntos mar adentro a distancias de 10, 20 y 30 metros desde la orilla de la costa. El mayor registro de valores que se obtuvo del recuento de coliformes totales en ambas playas fue de 160,900 NMP/100ml y un menor valor de este grupo de 200 NMP/100ml. Para el grupo de coliformes fecales se registró un valor máximo de 34,000 NMP/100ml. La bacteria Escherichia coli se registró un recuento máximo de 33,000 NMP/100ml y para el recuento de las heterótrofas se registró un valor máximo sobresaliente en las dos playas de 13,000 UFC/100ml, resaltando que la mayoría de los promedios elevados se registraron en la playa El Tunco, además; se registraron en la playa el Tunco las siguientes bacterias: Pseudomona aeruginosa, en 10 muestras, Vibrio alginolyticus en 26 muestras y Vibrio parahaemolyticus en 14 muestras. En el Zunzal: Pseudomona aeruginosa en 20 muestras, Vibrio alginolyticus en 27 muestras y Vibrio parahaemolyticus en 12 muestras. Concluyendo que las playas El Tunco y El Sunzal, no entran dentro de los límites máximos permisibles por la norma mexicana para aguas de uso recreacional, ambas por los resultados obtenidos en el final de época lluviosa, la transición y el inicio de la época seca.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Global changes linked to increases in temperature and ocean acidification, but also to more direct anthropogenic influences such as aquaculture, have caused a worldwide increase in the reports of Vibrio-associated illnesses affecting humans and also animals such as shrimp and molluscs. Investigation of the emergence of Vibrio pathogenesis events requires the analysis of microbial evolution at the gene, genome and population levels, in order to identify genomic modifications linked to increased virulence, resistance and/or prevalence, or to recent host shift. From a more applied point of view, the elucidation of virulence mechanisms is a prerequisite to devising prophylactic methods to fight infectious agents. In comparison with human pathogens, fairly little is known about the requirements for virulence in vibrios pathogenic to animals. However, the advent of genome sequencing, especially next-generation technologies,the possibility of genetically manipulating most of the Vibrio strains, and the recent availability of standardised animals for experimental infections have now compensated for the considerable delay in advancement of the knowledge of non-model pathogens such as Vibrio and have led to new scientific questions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To evaluate the anti-vibrio potentials of acetone and aqueous leaf extracts of Ocimum gratissimum and determine its relevance in the treatment of vibrios infection. Methods: The agar-well diffusion method was used for screening the extracts for their anti-vibrio activity. Broth micro-dilution assay was used to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the extracts. Time-kill assay was used to assess bactericidal and/or bacteriostatic activity. Results: The acetone extract showed activity against 47.5 % (19/40) of the test bacteria, while the aqueous extract had activity against 30 % (12/40). MIC and MBC values range for the acetone extract were 0.625 – 5.0 mg/mL and 2.5 – 10 mg/mL respectively. The range of MIC exhibited by the antibiotic (gentamicin) against the vibrios is 0.002 mg/mL and >0.256 mg/mL. Significant reduction in the bacterial density was at 2 × MIC after a 4 h interaction period, while bacterial density after 6 and 8 h interactions with extract was highly bactericidal. Growth inhibition and efficacy of the crude acetone extract were observed to be both concentration- and time-dependent. Conclusion: The bacteriostatic and bactericidal activities observed for Ocimum gratissimum leaf suggest that the plant is a potential source of bioactive components that may be effective in the treatment of vibrios infections.