837 resultados para Vehicular batteries
Resumo:
The separator membrane in batteries and fuel cells is of crucial importance for the function of these devices. In lithium ion batteries the separator membrane as well as the polymer matrix of the electrodes consists of polymer electrolytes which are lithium ion conductors. To overcome the disadvantage of currently used polymer electrolytes which are highly swollen with liquids and thus mechanically and electrochemically unstable, the goal of this work is a new generation of solid polymer electrolytes with a rigid backbone and a soft side chain structure. Moreover the novel material should be based on cheap substrates and its synthesis should not be complicated aiming at low overall costs. The new materials are based on hydroxypropylcellulose and oligoethyleneoxide derivatives as starting materials. The grafting of the oligoethyleneoxide side chains onto the cellulose was carried out following two synthetic methods. One is based on a bromide derivative and another based on p-toluolsulfonyl as a leaving group. The side chain reagents were prepared form tri(ethylene glycol) monoethyl ether. In order to improve the mechanical properties the materials were crosslinked. Two different conceptions have been engaged based on either urethane chemistry or photosensitive dimethyl-maleinimide derivatives. PEO - graft - cellulose derivatives with a high degree of substitution between 2,9 and 3,0 were blended with lithium trifluoromethane-sulfonate, lithium bis(trifluorosulfone)imide and lithium tetrafluoroborate. The molar ratios were in the range from 0,02 to 0,2 [Li]/[O]. The products have been characterized with nuclear magnetic resonance (NMR), gel permeation chromatography (GPC) and laserlight scattering (LS) with respect to their degree of substitution and molecular weight. The effect of salt concentration on ionic conductivity, thermal behaviour and morphology has been investiga-ted with impedance spectroscopy, differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The crosslinking reactions were controlled with dynamic mechanical analysis (DMS). The degree of substitution of our products is varying between 2,8 and 3,0 as determined by NMR. PEO - graft - cellulose derivatives are highly viscous liquids at room temperature with glass transition temperatures around 215 K. The glass transition temperature for the Lithium salt complexes of PEO - graft - cellulose deri-vatives increase with increasing salt content. The maximum conductivity at room temperature is about 10-4 and at 100°C around 10-3 Scm-1. The presence of lithium salt decreases the thermal stability of the complexes in comparison to pure PEO - graft - cellulose derivatives. Complexes heated over 140 – 150°C completely lose their ionic conductivity. The temperature dependence of the conductivity presented as Arrhenius-type plots for all samples is similar in shape and follows a VTF behaviour. This proofs that the ionic transport is closely related to the segmental motions of the polymer chains. Novel cellulose derivatives with grafted oligoethylen-oxide side chains with well-defined chemical structure and high side chain grafting density have been synthesized. Cellulose was chosen as stiff, rod like macromolecule for the backbone while oligoethylen-oxides are chosen as flexible side chains. A maximum grafting density of 3.0 have been obtained. The best conductivity reaches 10-3 Scm-1 at 100°C for a Li-triflate salt complex with a [Li]/[O] ratio of 0.8. The cross-linked complexes containing the lithium salts form elastomeric films with convenient mechanical stability. Our method of cellulose modification is based on relatively cheap and commercially available substrates and as such appears to be a promising alternative for industrial applications.
Resumo:
The worldwide demand for a clean and low-fuel-consuming transport promotes the development of safe, high energy and power electrochemical storage and conversion systems. Lithium-ion batteries (LIBs) are considered today the best technology for this application as demonstrated by the recent interest of automotive industry in hybrid (HEV) and electric vehicles (EV) based on LIBs. This thesis work, starting from the synthesis and characterization of electrode materials and the use of non-conventional electrolytes, demonstrates that LIBs with novel and safe electrolytes and electrode materials meet the targets of specific energy and power established by U.S.A. Department of Energy (DOE) for automotive application in HEV and EV. In chapter 2 is reported the origin of all chemicals used, the description of the instruments used for synthesis and chemical-physical characterizations, the electrodes preparation, the batteries configuration and the electrochemical characterization procedure of electrodes and batteries. Since the electrolyte is the main critical point of a battery, in particular in large- format modules, in chapter 3 we focused on the characterization of innovative and safe electrolytes based on ionic liquids (characterized by high boiling/decomposition points, thermal and electrochemical stability and appreciable conductivity) and mixtures of ionic liquid with conventional electrolyte. In chapter 4 is discussed the microwave accelerated sol–gel synthesis of the carbon- coated lithium iron phosphate (LiFePO 4 -C), an excellent cathode material for LIBs thanks to its intrinsic safety and tolerance to abusive conditions, which showed excellent electrochemical performance in terms of specific capacity and stability. In chapter 5 are presented the chemical-physical and electrochemical characterizations of graphite and titanium-based anode materials in different electrolytes. We also characterized a new anodic material, amorphous SnCo alloy, synthetized with a nanowire morphology that showed to strongly enhance the electrochemical stability of the material during galvanostatic full charge/discharge cycling. Finally, in chapter 6, are reported different types of batteries, assembled using the LiFePO 4 -C cathode material, different anode materials and electrolytes, characterized by deep galvanostatic charge/discharge cycles at different C-rates and by test procedures of the DOE protocol for evaluating pulse power capability and available energy. First, we tested a battery with the innovative cathode material LiFePO 4 -C and conventional graphite anode and carbonate-based electrolyte (EC DMC LiPF 6 1M) that demonstrated to surpass easily the target for power-assist HEV application. Given that the big concern of conventional lithium-ion batteries is the flammability of highly volatile organic carbonate- based electrolytes, we made safe batteries with electrolytes based on ionic liquid (IL). In order to use graphite anode in IL electrolyte we added to the IL 10% w/w of vinylene carbonate (VC) that produces a stable SEI (solid electrolyte interphase) and prevents the graphite exfoliation phenomenon. Then we assembled batteries with LiFePO 4 -C cathode, graphite anode and PYR 14 TFSI 0.4m LiTFSI with 10% w/w of VC that overcame the DOE targets for HEV application and were stable for over 275 cycles. We also assembled and characterized ―high safety‖ batteries with electrolytes based on pure IL, PYR 14 TFSI with 0.4m LiTFSI as lithium salt, and on mixture of this IL and standard electrolyte (PYR 14 TFSI 50% w/w and EC DMC LiPF 6 50% w/w), using titanium-based anodes (TiO 2 and Li 4 Ti 5 O 12 ) that are commonly considered safer than graphite in abusive conditions. The batteries bearing the pure ionic liquid did not satisfy the targets for HEV application, but the batteries with Li 4 Ti 5 O 12 anode and 50-50 mixture electrolyte were able to surpass the targets. We also assembled and characterized a lithium battery (with lithium metal anode) with a polymeric electrolyte based on poly-ethilenoxide (PEO 20 – LiCF 3 SO 3 +10%ZrO 2 ), which satisfied the targets for EV application and showed a very impressive cycling stability. In conclusion, we developed three lithium-ion batteries of different chemistries that demonstrated to be suitable for application in power-assist hybrid vehicles: graphite/EC DMC LiPF 6 /LiFePO 4 -C, graphite/PYR 14 TFSI 0.4m LiTFSI with 10% VC/LiFePO 4 -C and Li 4 T i5 O 12 /PYR 14 TFSI 50%-EC DMC LiPF 6 50%/LiFePO 4 -C. We also demonstrated that an all solid-state polymer lithium battery as Li/PEO 20 –LiCF 3 SO 3 +10%ZrO 2 /LiFePO 4 -C is suitable for application on electric vehicles. Furthermore we developed a promising anodic material alternative to the graphite, based on SnCo amorphous alloy.
Resumo:
The rapid development in the field of lighting and illumination allows low energy consumption and a rapid growth in the use, and development of solid-state sources. As the efficiency of these devices increases and their cost decreases there are predictions that they will become the dominant source for general illumination in the short term. The objective of this thesis is to study, through extensive simulations in realistic scenarios, the feasibility and exploitation of visible light communication (VLC) for vehicular ad hoc networks (VANETs) applications. A brief introduction will introduce the new scenario of smart cities in which visible light communication will become a fundamental enabling technology for the future communication systems. Specifically, this thesis focus on the acquisition of several, frequent, and small data packets from vehicles, exploited as sensors of the environment. The use of vehicles as sensors is a new paradigm to enable an efficient environment monitoring and an improved traffic management. In most cases, the sensed information must be collected at a remote control centre and one of the most challenging aspects is the uplink acquisition of data from vehicles. My thesis discusses the opportunity to take advantage of short range vehicle-to-vehicle (V2V) and vehicle-to-roadside (V2R) communications to offload the cellular networks. More specifically, it discusses the system design and assesses the obtainable cellular resource saving, by considering the impact of the percentage of vehicles equipped with short range communication devices, of the number of deployed road side units, and of the adopted routing protocol. When short range communications are concerned, WAVE/IEEE 802.11p is considered as standard for VANETs. Its use together with VLC will be considered in urban vehicular scenarios to let vehicles communicate without involving the cellular network. The study is conducted by simulation, considering both a simulation platform (SHINE, simulation platform for heterogeneous interworking networks) developed within the Wireless communication Laboratory (Wilab) of the University of Bologna and CNR, and network simulator (NS3). trying to realistically represent all the wireless network communication aspects. Specifically, simulation of vehicular system was performed and introduced in ns-3, creating a new module for the simulator. This module will help to study VLC applications in VANETs. Final observations would enhance and encourage potential research in the area and optimize performance of VLC systems applications in the future.
Resumo:
In recent times, the demand for the storage of electrical energy has grown rapidly for both static applications and the portable electronics enforcing the substantial improvement in battery systems, and Li-ion batteries have been proven to have maximum energy storage density in all rechargeable batteries. However, major breakthroughs are required to consummate the requirement of higher energy density with lower cost to penetrate new markets. Graphite anode having limited capacity has become a bottle neck in the process of developing next generation batteries and can be replaced by higher capacity metals such as Silicon. In the present study we are focusing on the mechanical behavior of the Si-thin film anode under various operating conditions. A numerical model is developed to simulate the intercalation induced stress and the failure mechanism of the complex anode structure. Effect of the various physical phenomena such as diffusion induced stress, plasticity and the crack propagation are investigated to predict better performance parameters for improved design.
Resumo:
Speed enforcement on public roadways is an important issue in order to guarantee road security and to reduce the number and seriousness of traffic accidents. Traditionally, this task has been partially solved using radar and/or laser technologies and, more recently, using video-camera based systems. All these systems have significant shortcomings that have yet to be overcome. The main drawback of classical Doppler radar technology is that the velocity measurement fails when several vehicles are in the radars beam. Modern radar systems are able to measure speed and range between vehicle and radar. However, this is not enough to discriminate the lane where the vehicle is driving on. The limitation of several vehicles in the beam is overcome using laser technology. However, laser systems have another important limitation: They cannot measure the speed of several vehicles simultaneously. Novel video-camera systems, based on license plate identification, solve the previous drawbacks, but they have the problem that they can only measure average speed but never top-speed. This paper studies the feasibility of using an interferometric linear frequency modulated continuous wave radar to improve top-speed enforcement on roadways. Two different systems based on down-the-road and across-the-road radar configurations are presented. The main advantage of the proposed solutions is they can simultaneously measure speed, range, and lane of several vehicles, allowing the univocal identification of the offenders. A detailed analysis about the operation and accuracy of these solutions is reported. In addition, the feasibility of the proposed techniques has been demonstrated with simulations and real experiments using a Ka-band interferometric radar developed by our research group.
Resumo:
The main objective of this paper is to propose a model for helping logistics managers to choose the appropriate location points in order to situate the collection points for used portable batteries. The proposed model has two parts: a static part and a dynamic part. We can conclude that this model helps managers in the decision of locating/modifying collection points in two ways: to add new collection points to a reverse logistics network that needs more points or to delete collection points from a network that has more points than those recommended.
Resumo:
Sign.: []4, A-O8, P5
Resumo:
The elemental distribution of as-received (non-charged) and charged Li-ion battery positive electrodes containing LixNi0.8Co0.15Al0.05O2 (0.75 ? x ? 1.0) microparticles as active material is characterized by combining μ-PIXE and μ-PIGE techniques. PIGE measurements evidence that the Li distribution is inhomogeneous (existence of Li-rich and Li-depleted regions) in as-received electrodes corresponding with the distribution of secondary particles but it is homogeneous within the studied individual secondary micro-particles. The dependence of the Li distribution on electrode thickness and on charging conditions is characterized by measuring the Li distribution maps in specifically fabricated cross-sectional samples. These data show that decreasing the electrode thickness down to 35 μm and charging the batteries at slow rate give rise to more homogeneous Li depth profiles.
Resumo:
Digital services and communications in vehicular scenarios provide the essential assets to improve road transport in several ways like reducing accidents, improving traffic efficiency and optimizing the transport of goods and people. Vehicular communications typically rely on VANET (Vehicular Ad hoc Networks). In these networks vehicles communicate with each other without the need of infrastructure. VANET are mainly oriented to disseminate information to the vehicles in certain geographic area for time critical services like safety warnings but present very challenging requirements that have not been successfully fulfilled nowadays. Some of these challenges are; channel saturation due to simultaneous radio access of many vehicles, routing protocols in topologies that vary rapidly, minimum quality of service assurance and security mechanisms to efficiently detect and neutralize malicious attacks. Vehicular services can be classified in four important groups: Safety, Efficiency, Sustainability and Infotainment. The benefits of these services for the transport sector are clear but many technological and business challenges need to be faced before a real mass market deployment. Service delivery platforms are not prepared for fulfilling the needs of this complex environment with restrictive requirements due to the criticism of some services To overcome this situation, we propose a solution called VISIONS “Vehicular communication Improvement: Solution based on IMS Operational Nodes and Services”. VISIONS leverages on IMS subsystem and NGN enablers, and follows the CALM reference Architecture standardized by ISO. It also avoids the use of Road Side Units (RSUs), reducing complexity and high costs in terms of deployment and maintenance. We demonstrate the benefits in the following areas: 1. VANET networks efficiency. VISIONS provide a mechanism for the vehicles to access valuable information from IMS and its capabilities through a cellular channel. This efficiency improvement will occur in two relevant areas: a. Routing mechanisms. These protocols are responsible of carrying information from a vehicle to another (or a group of vehicles) using multihop mechanisms. We do not propose a new algorithm but the use of VANET topology information provided through our solution to enrich the performance of these protocols. b. Security. Many aspects of security (privacy, key, authentication, access control, revocation mechanisms, etc) are not resolved in vehicular communications. Our solution efficiently disseminates revocation information to neutralize malicious nodes in the VANET. 2. Service delivery platform. It is based on extended enablers, reference architectures, standard protocols and open APIs. By following this approach, we reduce costs and resources for service development, deployment and maintenance. To quantify these benefits in VANET networks, we provide an analytical model of the system and simulate our solution in realistic scenarios. The simulations results demonstrate how VISIONS improves the performance of relevant routing protocols and is more efficient neutralizing security attacks than the widely proposed solutions based on RSUs. Finally, we design an innovative Social Network service based in our platform, explaining how VISIONS facilitate the deployment and usage of complex capabilities. RESUMEN Los servicios digitales y comunicaciones en entornos vehiculares proporcionan herramientas esenciales para mejorar el transporte por carretera; reduciendo el número de accidentes, mejorando la eficiencia del tráfico y optimizando el transporte de mercancías y personas. Las comunicaciones vehiculares generalmente están basadas en redes VANET (Vehicular Ad hoc Networks). En dichas redes, los vehículos se comunican entre sí sin necesidad de infraestructura. Las redes VANET están principalmente orientadas a difundir información (por ejemplo advertencias de seguridad) a los vehículos en determinadas zonas geográficas, pero presentan unos requisitos muy exigentes que no se han resuelto con éxito hasta la fecha. Algunos de estos retos son; saturación del canal de acceso de radio debido al acceso simultáneo de múltiples vehículos, la eficiencia de protocolos de encaminamiento en topologías que varían rápidamente, la calidad de servicio (QoS) y los mecanismos de seguridad para detectar y neutralizar los ataques maliciosos de manera eficiente. Los servicios vehiculares pueden clasificarse en cuatro grupos: Seguridad, Eficiencia del tráfico, Sostenibilidad, e Infotainment (información y entretenimiento). Los beneficios de estos servicios para el sector son claros, pero es necesario resolver muchos desafíos tecnológicos y de negocio antes de una implementación real. Las actuales plataformas de despliegue de servicios no están preparadas para satisfacer las necesidades de este complejo entorno con requisitos muy restrictivos debido a la criticidad de algunas aplicaciones. Con el objetivo de mejorar esta situación, proponemos una solución llamada VISIONS “Vehicular communication Improvement: Solution based on IMS Operational Nodes and Services”. VISIONS se basa en el subsistema IMS, las capacidades NGN y es compatible con la arquitectura de referencia CALM estandarizado por ISO para sistemas de transporte. También evita el uso de elementos en las carreteras, conocidos como Road Side Units (RSU), reduciendo la complejidad y los altos costes de despliegue y mantenimiento. A lo largo de la tesis, demostramos los beneficios en las siguientes áreas: 1. Eficiencia en redes VANET. VISIONS proporciona un mecanismo para que los vehículos accedan a información valiosa proporcionada por IMS y sus capacidades a través de un canal de celular. Dicho mecanismo contribuye a la mejora de dos áreas importantes: a. Mecanismos de encaminamiento. Estos protocolos son responsables de llevar información de un vehículo a otro (o a un grupo de vehículos) utilizando múltiples saltos. No proponemos un nuevo algoritmo de encaminamiento, sino el uso de información topológica de la red VANET a través de nuestra solución para enriquecer el funcionamiento de los protocolos más relevantes. b. Seguridad. Muchos aspectos de la seguridad (privacidad, gestión de claves, autenticación, control de acceso, mecanismos de revocación, etc) no están resueltos en las comunicaciones vehiculares. Nuestra solución difunde de manera eficiente la información de revocación para neutralizar los nodos maliciosos en la red. 2. Plataforma de despliegue de servicios. Está basada en capacidades NGN, arquitecturas de referencia, protocolos estándar y APIs abiertos. Siguiendo este enfoque, reducimos costes y optimizamos procesos para el desarrollo, despliegue y mantenimiento de servicios vehiculares. Para cuantificar estos beneficios en las redes VANET, ofrecemos un modelo de analítico del sistema y simulamos nuestra solución en escenarios realistas. Los resultados de las simulaciones muestran cómo VISIONS mejora el rendimiento de los protocolos de encaminamiento relevantes y neutraliza los ataques a la seguridad de forma más eficientes que las soluciones basadas en RSU. Por último, diseñamos un innovador servicio de red social basado en nuestra plataforma, explicando cómo VISIONS facilita el despliegue y el uso de las capacidades NGN.
Resumo:
Batteries and ultracapacitors for hybrid and electric vehicles must satisfy very demanding working conditions that are not usual in other applications. In this sense, specific tests must be performed in order to draw accurate conclusions about their behaviour. To do so, new advanced test benches are needed. These platforms must allow the study of a wide variety of energy storage systems under conditions similar to the real ones. In this paper, a flexible, low-cost and highly customizable system is presented. This system allows batteries and ultracapacitors to be tested in many and varied ways, effectively emulating the working conditions that they face in an electric vehicle. The platform was specifically designed to study energy storage systems for electric and hybrid vehicles, meaning that it is suitable to test different systems in many different working conditions, including real driving cycles. This flexibility is achieved keeping the cost of the platform low, which makes the proposed test bench a feasible alternative for the industry. As an example of the functionality of the platform, a test consisting of a 17-minute ARTEMIS urban cycle with a NiMH battery pack is presented.
Resumo:
Assuring the sustainability of quality in photovoltaic rural electrification programmes involves enhancing the reliability of the components of solar home systems as well as the characterization of the overall programme cost structure. Batteries and photovoltaic modules have a great impact on both the reliability and the cost assessment, the battery being the weakest component of the solar home system and consequently the most expensive element of the programme. The photovoltaic module, despite being the most reliable component, has a significant impact cost-wise on the initial investment, even at current market prices. This paper focuses on the in-field testing of both batteries and photovoltaic modules working under real operating conditions within a sample of 41 solar home systems belonging to a large photovoltaic rural electrification programme with more than 13,000 installed photovoltaic systems. Different reliability parameters such as lifetime have been evaluated, taking into account different factors, for example energy consumption rates, or the manufacturing quality of batteries. A degradation model has been proposed relating both loss of capacity and time of operation. The user e solar home system binomial is also analysed in order to understand the meaning of battery lifetime in rural electrification.
Resumo:
We discuss the well-posedness of a mathematical model that is used in the literature for the simulation of lithium-ion batteries. First, a mathematical model based on a macrohomogeneous approach is presented, following previous work. Then it is shown, from a physical and a mathematical point of view, that a boundary condition widely used in the literature is not correct. Although the errors could be just sign typos (which can be explained as carelessness in the use of d/dx versus d/dn, with n the outward unit vector) and authors using this model probably use the correct boundary condition when they solve it in order to do simulations, readers should be aware of the right choice. Therefore, the deduction of the correct boundary condition is done here, and a mathematical study of the well-posedness of the corresponding problem is presented.