905 resultados para Vehicle counting and classification
Resumo:
We propose a deep study on tissue modelization andclassification Techniques on T1-weighted MR images. Threeapproaches have been taken into account to perform thisvalidation study. Two of them are based on FiniteGaussian Mixture (FGM) model. The first one consists onlyin pure gaussian distributions (FGM-EM). The second oneuses a different model for partial volume (PV) (FGM-GA).The third one is based on a Hidden Markov Random Field(HMRF) model. All methods have been tested on a DigitalBrain Phantom image considered as the ground truth. Noiseand intensity non-uniformities have been added tosimulate real image conditions. Also the effect of ananisotropic filter is considered. Results demonstratethat methods relying in both intensity and spatialinformation are in general more robust to noise andinhomogeneities. However, in some cases there is nosignificant differences between all presented methods.
Resumo:
Mature T-cell and T/NK-cell neoplasms are both uncommon and heterogeneous, among the broad category of non-Hodgkin's lymphomas. Due to the lack of specific genetic alterations in the vast majority of cases, most currently defined entities show overlapping morphologic and immunophenotypic features and therefore pose a challenge to the diagnostic pathologist. The goal of the symposium is to address current criteria for the recognition of specific subtypes of T-cell lymphoma, and to highlight new data regarding emerging immunophenotypic or molecular markers. This activity has been designed to meet the needs of practicing pathologists, and residents and fellows enrolled in training programs in anatomic and clinical pathology. It should be a particular benefit to those with an interest in hematopathology. Upon completion of this activity, participants should be better able to: -To be able to state the basis for the classification of mature T-cell malignancies involving nodal and extranodal sites. -To recognize and accurately diagnose the various subtypes of nodal and extranodal peripheral T-cell lymphomas. -To utilize immunohistochemical and molecular tests to characterize atypical T-cell proliferations. -To recognize and accurately diagnose T-cell lymphoproliferative lesions involving the skin and gastrointestinal tract, and be able to provide guidance regarding their clinical aggressiveness and management -To be able to utilize flow cytometric data to identify diverse functional T-cell subsets.
Resumo:
BACKGROUND: The diagnosis of malignant hematologic diseases has become increasingly complex during the last decade. It is based on the interpretation of results from different laboratory analyses, which range from microscopy to gene expression profiling. Recently, a method for the analysis of RNA phenotypes has been developed, the nCounter technology (Nanostring® Technologies), which allows for simultaneous quantification of hundreds of RNA molecules in biological samples. We evaluated this technique in a Swiss multi-center study on eighty-six samples from acute leukemia patients. METHODS: mRNA and protein profiles were established for normal peripheral blood and bone marrow samples. Signal intensities of the various tested antigens with surface expression were similar to those found in previously performed Affymetrix microarray analyses. Acute leukemia samples were analyzed for a set of twenty-two validated antigens and the Pearson Correlation Coefficient for nCounter and flow cytometry results was calculated. RESULTS: Highly significant values between 0.40 and 0.97 were found for the twenty-two antigens tested. A second correlation analysis performed on a per sample basis resulted in concordant results between flow cytometry and nCounter in 44-100% of the antigens tested (mean = 76%), depending on the number of blasts present in a sample, the homogeneity of the blast population, and the type of leukemia (AML or ALL). CONCLUSIONS: The nCounter technology allows for fast and easy depiction of a mRNA profile from hematologic samples. This technology has the potential to become a valuable tool for the diagnosis of acute leukemias, in addition to multi-color flow cytometry.
Resumo:
Near-infrared spectroscopy (NIRS) was used to analyse the crude protein content of dried and milled samples of wheat and to discriminate samples according to their stage of growth. A calibration set of 72 samples from three growth stages of wheat (tillering, heading and harvest) and a validation set of 28 samples was collected for this purpose. Principal components analysis (PCA) of the calibration set discriminated groups of samples according to the growth stage of the wheat. Based on these differences, a classification procedure (SIMCA) showed a very accurate classification of the validation set samples : all of them were successfully classified in each group using this procedure when both the residual and the leverage were used in the classification criteria. Looking only at the residuals all the samples were also correctly classified except one of tillering stage that was assigned to both tillering and heading stages. Finally, the determination of the crude protein content of these samples was considered in two ways: building up a global model for all the growth stages, and building up local models for each stage, separately. The best prediction results for crude protein were obtained using a global model for samples in the two first growth stages (tillering and heading), and using a local model for the harvest stage samples.
Resumo:
Diagnosis of community acquired legionella pneumonia (CALP) is currently performed by means of laboratory techniques which may delay diagnosis several hours. To determine whether ANN can categorize CALP and non-legionella community-acquired pneumonia (NLCAP) and be standard for use by clinicians, we prospectively studied 203 patients with community-acquired pneumonia (CAP) diagnosed by laboratory tests. Twenty one clinical and analytical variables were recorded to train a neural net with two classes (LCAP or NLCAP class). In this paper we deal with the problem of diagnosis, feature selection, and ranking of the features as a function of their classification importance, and the design of a classifier the criteria of maximizing the ROC (Receiving operating characteristics) area, which gives a good trade-off between true positives and false negatives. In order to guarantee the validity of the statistics; the train-validation-test databases were rotated by the jackknife technique, and a multistarting procedure was done in order to make the system insensitive to local maxima.
Resumo:
The Commission on Classification and Terminology and the Commission on Epidemiology of the International League Against Epilepsy (ILAE) have charged a Task Force to revise concepts, definition, and classification of status epilepticus (SE). The proposed new definition of SE is as follows: Status epilepticus is a condition resulting either from the failure of the mechanisms responsible for seizure termination or from the initiation of mechanisms, which lead to abnormally, prolonged seizures (after time point t1 ). It is a condition, which can have long-term consequences (after time point t2 ), including neuronal death, neuronal injury, and alteration of neuronal networks, depending on the type and duration of seizures. This definition is conceptual, with two operational dimensions: the first is the length of the seizure and the time point (t1 ) beyond which the seizure should be regarded as "continuous seizure activity." The second time point (t2 ) is the time of ongoing seizure activity after which there is a risk of long-term consequences. In the case of convulsive (tonic-clonic) SE, both time points (t1 at 5 min and t2 at 30 min) are based on animal experiments and clinical research. This evidence is incomplete, and there is furthermore considerable variation, so these time points should be considered as the best estimates currently available. Data are not yet available for other forms of SE, but as knowledge and understanding increase, time points can be defined for specific forms of SE based on scientific evidence and incorporated into the definition, without changing the underlying concepts. A new diagnostic classification system of SE is proposed, which will provide a framework for clinical diagnosis, investigation, and therapeutic approaches for each patient. There are four axes: (1) semiology; (2) etiology; (3) electroencephalography (EEG) correlates; and (4) age. Axis 1 (semiology) lists different forms of SE divided into those with prominent motor systems, those without prominent motor systems, and currently indeterminate conditions (such as acute confusional states with epileptiform EEG patterns). Axis 2 (etiology) is divided into subcategories of known and unknown causes. Axis 3 (EEG correlates) adopts the latest recommendations by consensus panels to use the following descriptors for the EEG: name of pattern, morphology, location, time-related features, modulation, and effect of intervention. Finally, axis 4 divides age groups into neonatal, infancy, childhood, adolescent and adulthood, and elderly.
Resumo:
Adult and pediatric laryngotracheal stenoses (LTS) comprise a wide array of various conditions that require precise preoperative assessment and classification to improve comparison of different therapeutic modalities in a matched series of patients. This consensus paper of the European Laryngological Society proposes a five-step endoscopic airway assessment and a standardized reporting system to better differentiate fresh, incipient from mature, cicatricial LTSs, simple one-level from complex multilevel LTSs and finally "healthy" from "severely morbid" patients. The proposed scoring system, which integrates all of these parameters, may be used to help define different groups of LTS patients, choose the best treatment modality for each individual patient and assess distinct post-treatment outcomes accordingly.
Resumo:
Software testing is one of the essential parts in software engineering process. The objective of the study was to describe software testing tools and the corresponding use. The thesis contains examples of software testing tools usage. The study was conducted as a literature study, with focus on current software testing practices and quality assurance standards. In the paper a tool classifier was employed, and testing tools presented in study were classified according to it. We found that it is difficult to distinguish current available tools by certain testing activities as many of them contain functionality that exceeds scopes of a single testing type.
Resumo:
Since the times preceding the Second World War the subject of aircraft tracking has been a core interest to both military and non-military aviation. During subsequent years both technology and configuration of the radars allowed the users to deploy it in numerous fields, such as over-the-horizon radar, ballistic missile early warning systems or forward scatter fences. The latter one was arranged in a bistatic configuration. The bistatic radar has continuously re-emerged over the last eighty years for its intriguing capabilities and challenging configuration and formulation. The bistatic radar arrangement is used as the basis of all the analyzes presented in this work. The aircraft tracking method of VHF Doppler-only information, developed in the first part of this study, is solely based on Doppler frequency readings in relation to time instances of their appearance. The corresponding inverse problem is solved by utilising a multistatic radar scenario with two receivers and one transmitter and using their frequency readings as a base for aircraft trajectory estimation. The quality of the resulting trajectory is then compared with ground-truth information based on ADS-B data. The second part of the study deals with the developement of a method for instantaneous Doppler curve extraction from within a VHF time-frequency representation of the transmitted signal, with a three receivers and one transmitter configuration, based on a priori knowledge of the probability density function of the first order derivative of the Doppler shift, and on a system of blocks for identifying, classifying and predicting the Doppler signal. The extraction capabilities of this set-up are tested with a recorded TV signal and simulated synthetic spectrograms. Further analyzes are devoted to more comprehensive testing of the capabilities of the extraction method. Besides testing the method, the classification of aircraft is performed on the extracted Bistatic Radar Cross Section profiles and the correlation between them for different types of aircraft. In order to properly estimate the profiles, the ADS-B aircraft location information is adjusted based on extracted Doppler frequency and then used for Bistatic Radar Cross Section estimation. The classification is based on seven types of aircraft grouped by their size into three classes.
Resumo:
In order to determine the variability of pequi tree (Caryocar brasiliense Camb.) populations, volatile compounds from fruits of eighteen trees representing five populations were extracted by headspace solid-phase microextraction and analyzed by gas chromatography-mass spectrometry. Seventy-seven compounds were identified, including esters, hydrocarbons, terpenoids, ketones, lactones, and alcohols. Several compounds had not been previously reported in the pequi fruit. The amount of total volatile compounds and the individual compound contents varied between plants. The volatile profile enabled the differentiation of all of the eighteen plants, indicating that there is a characteristic profile in terms of their origin. The use of Principal Component Analysis and Cluster Analysis enabled the establishment of markers (dendrolasin, ethyl octanoate, ethyl 2-octenoate and β-cis-ocimene) that discriminated among the pequi trees. According to the Cluster Analysis, the plants were classified into three main clusters, and four other plants showed a tendency to isolation. The results from multivariate analysis did not always group plants from the same population together, indicating that there is greater variability within the populations than between pequi tree populations.
Resumo:
The curse of dimensionality is a major problem in the fields of machine learning, data mining and knowledge discovery. Exhaustive search for the most optimal subset of relevant features from a high dimensional dataset is NP hard. Sub–optimal population based stochastic algorithms such as GP and GA are good choices for searching through large search spaces, and are usually more feasible than exhaustive and deterministic search algorithms. On the other hand, population based stochastic algorithms often suffer from premature convergence on mediocre sub–optimal solutions. The Age Layered Population Structure (ALPS) is a novel metaheuristic for overcoming the problem of premature convergence in evolutionary algorithms, and for improving search in the fitness landscape. The ALPS paradigm uses an age–measure to control breeding and competition between individuals in the population. This thesis uses a modification of the ALPS GP strategy called Feature Selection ALPS (FSALPS) for feature subset selection and classification of varied supervised learning tasks. FSALPS uses a novel frequency count system to rank features in the GP population based on evolved feature frequencies. The ranked features are translated into probabilities, which are used to control evolutionary processes such as terminal–symbol selection for the construction of GP trees/sub-trees. The FSALPS metaheuristic continuously refines the feature subset selection process whiles simultaneously evolving efficient classifiers through a non–converging evolutionary process that favors selection of features with high discrimination of class labels. We investigated and compared the performance of canonical GP, ALPS and FSALPS on high–dimensional benchmark classification datasets, including a hyperspectral image. Using Tukey’s HSD ANOVA test at a 95% confidence interval, ALPS and FSALPS dominated canonical GP in evolving smaller but efficient trees with less bloat expressions. FSALPS significantly outperformed canonical GP and ALPS and some reported feature selection strategies in related literature on dimensionality reduction.
Resumo:
The curse of dimensionality is a major problem in the fields of machine learning, data mining and knowledge discovery. Exhaustive search for the most optimal subset of relevant features from a high dimensional dataset is NP hard. Sub–optimal population based stochastic algorithms such as GP and GA are good choices for searching through large search spaces, and are usually more feasible than exhaustive and determinis- tic search algorithms. On the other hand, population based stochastic algorithms often suffer from premature convergence on mediocre sub–optimal solutions. The Age Layered Population Structure (ALPS) is a novel meta–heuristic for overcoming the problem of premature convergence in evolutionary algorithms, and for improving search in the fitness landscape. The ALPS paradigm uses an age–measure to control breeding and competition between individuals in the population. This thesis uses a modification of the ALPS GP strategy called Feature Selection ALPS (FSALPS) for feature subset selection and classification of varied supervised learning tasks. FSALPS uses a novel frequency count system to rank features in the GP population based on evolved feature frequencies. The ranked features are translated into probabilities, which are used to control evolutionary processes such as terminal–symbol selection for the construction of GP trees/sub-trees. The FSALPS meta–heuristic continuously refines the feature subset selection process whiles simultaneously evolving efficient classifiers through a non–converging evolutionary process that favors selection of features with high discrimination of class labels. We investigated and compared the performance of canonical GP, ALPS and FSALPS on high–dimensional benchmark classification datasets, including a hyperspectral image. Using Tukey’s HSD ANOVA test at a 95% confidence interval, ALPS and FSALPS dominated canonical GP in evolving smaller but efficient trees with less bloat expressions. FSALPS significantly outperformed canonical GP and ALPS and some reported feature selection strategies in related literature on dimensionality reduction.
Resumo:
Affiliation: Centre Robert-Cedergren de l'Université de Montréal en bio-informatique et génomique & Département de biochimie, Université de Montréal
Resumo:
Pre-publication drafts are reproduced with permission and copyright © 2013 of the Journal of Orthopaedic Trauma [Mutch J, Rouleau DM, Laflamme GY, Hagemeister N. Accurate Measurement of Greater Tuberosity Displacement without Computed Tomography: Validation of a method on Plain Radiography to guide Surgical Treatment. J Orthop Trauma. 2013 Nov 21: Epub ahead of print.] and copyright © 2014 of the British Editorial Society of Bone and Joint Surgery [Mutch JAJ, Laflamme GY, Hagemeister N, Cikes A, Rouleau DM. A new morphologic classification for greater tuberosity fractures of the proximal humerus: validation and clinical Implications. Bone Joint J 2014;96-B:In press.]