990 resultados para Vasopressin-mediated Translocation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Forkhead transcription factor, FoxO3a induces genomic death responses in neurones following translocation from the cytosol to the nucleus. Nuclear translocation of FoxO3a is triggered by trophic factor withdrawal, oxidative stress and the stimulation of extrasynaptic NMDA receptors. Receptor activation of phosphatidylinositol 3-kinase (PI3K) – Akt signalling pathways retains FoxO3a in the cytoplasm thereby inhibiting the transcriptional activation of death promoting genes. We hypothesised that phenolic antioxidants such as tert-Butylhydroquinone (tBHQ), which is known to stimulate PI3K-Akt signalling, would inhibit FoxO3a translocation and activity. Treatment of cultured cortical neurones with NMDA increased the nuclear localisation of FoxO3a, reduced the phosphorylation of FoxO3a, increased caspase activity and upregulated Fas ligand expression. In contrast the phenolic antioxidant tBHQ caused retention of FoxO3a in the cytosol coincident with enhanced PI3K- dependent phosphorylation of FoxO3a. tBHQ-induced nuclear exclusion of FoxO3a was associated with reduced FoxO-mediated transcriptional activity. Exposure of neurones to tBHQ inhibited NMDA-induced nuclear translocation of FoxO3a prevented NMDA-induced upregulation of FoxO-mediated transcriptional activity, blocked caspase activation and protected neurones from NMDA-induced excitotoxic death. Collectively, these data suggest that phenolic antioxidants such as tBHQ oppose stress-induced activation of FoxO3a and therefore have potential neuroprotective utility in neurodegeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Common cold is one of the most frequent human inflammatory diseases caused by viruses and can facilitate bacterial super-infections resulting in sinusitis or pneumonia. The active ingredient of the drug Soledum, 1,8-cineole, is commonly applied for treating inflammatory diseases of the respiratory tract. However, the potential of 1,8-cineole for treating primary viral infections of the respiratory tract remains unclear. In the present study, we demonstrate for the first time that 1,8-cineole potentiates Poly(I:C)-induced activity of the anti-viral transcription factor Interferon Regulatory Factor 3, while simultaneously reducing pro-inflammatory NF-κB-activity in human cell lines, inferior turbinate stem cells (ITSCs) and ex vivo cultivated human nasal mucosa. Co-treatment of cell lines with Poly(I:C) and 1,8-cineole resulted in significantly increased IRF3 reporter gene activity compared to Poly(I:C) alone, whereas NF-κB-activity was reduced. Accordingly, 1,8-cineole- and Poly(I:C)-treatment led to increased nuclear translocation of IRF3 in ITSCs and a human ex vivo model of rhinosinusitis compared to the Poly(I:C)-treated approach. Nuclear translocation of IRF3 was significantly increased in ITSCs and slice cultures treated with LPS and 1,8-cineole compared to the LPS-treated cells mimicking bacterial infection. Our findings strongly suggest that 1,8-cineole potentiates the antiviral activity of IRF3 in addition to its inhibitory effect on pro-inflammatory NF-κB-signalling and may thus broaden its field of application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the past 20 y, the hormone melatonin was found to be produced in extrapineal sites, including cells of the immune system. Despite the increasing data regarding the biological effects of melatonin on the regulation of the immune system, the effect of this molecule on T cell survival remains largely unknown. Activation-induced cell death plays a critical role in the maintenance of the homeostasis of the immune system by eliminating self-reactive or chronically stimulated T cells. Because activated T cells not only synthesize melatonin but also respond to it, we investigated whether melatonin could modulate activation-induced cell death. We found that melatonin protects human and murine CD4(+) T cells from apoptosis by inhibiting CD95 ligand mRNA and protein upregulation in response to TCR/CD3 stimulation. This inhibition is a result of the interference with calmodulin/calcineurin activation of NFAT that prevents the translocation of NFAT to the nucleus. Accordingly, melatonin has no effect on T cells transfected with a constitutively active form of NFAT capable of migrating to the nucleus and transactivating target genes in the absence of calcineurin activity. Our results revealed a novel biochemical pathway that regulates the expression of CD95 ligand and potentially other downstream targets of NFAT activation. The Journal of Immunology, 2010, 184: 3487-3494.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We speculated that the influence of lateral preoptic area (LPO) in sodium balance, involves arginine(8)-vasopressin (AVP) and angiotensin (ANG II) on Na+ uptake in LPO. Therefore, the present study investigated the effects of central administration of specific AVP and ANG 11 antagonists (d(CH2)(5)-Tyr (Me)-AVP (AAVP) and [Adamanteanacetyl(1), 0-ET-D-Tyr(2), Val(4), Aminobutyryl(6), Arg(8.9)]-AVP (ATAVP) antagonists of V-1 and V-2 receptors of AVP. Also the effects of losartan and CGP42112A (selective ligands of the AT(1) and AT(2) angiotensin receptors, respectively), was investigated on Na+ uptake and renal fluid and electrolyte excretion. After an acclimatization period of 7 days, the animals were maintained under tribromoethanol (200 mg/kg body weight, intraperitonial) anesthesia and placed in a Kopf stereotaxic instrument. Stainless guide cannula was implanted into the LPO. AAVP and ATAVP injected into the LPO prior to AVP produced a reduction in the NaCl intake. Both the AT(1) and AT(2) ligands administered into the LPO elicited a decrease in the NaCl intake induced by AVP injected into the LPO. AVP injection into the LPO increased sodium renal excretion, but this was reduced by prior AAVP administration. The ATAVP produced a decreased in the natriuretic effect of AVP. The losartan injected into LPO previous to AVP decreased the sodium excretion and the CGP 421122A also decreased the natriuretic effect of AVP. The AVP produced an antidiuresis effect that was inhibited by prior administration into LPO of the ATAVP. The AAVP produced no change in the antidiuretic effect of AVP. These results suggest that LPO are implicated in sodium balance that is mediated by V-1, V-2, AT(2) and AT(2) receptors. (c) 2005 Elsevier B.V All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we investigated the influence of d(CH2)(5)-Tyr (Me)-AVP (A(1) AVP) and [Adamanteanacatyl(1),D-ET-D-Tyr(2), Va1(4), aminobutyril(6) ,As-8,As-9]-AVP 9 (A(2)AVP), antagonists of V-1 and V-2 arginine(8)-vasopressin (AVP) receptors, respectively, as well as the effects of losartan and CGP42112A, antagonists of angiotensin II (ANGII) AT(1) and AT(2), receptors, respectively, on water and 0.3 M sodium intake induced by water deprivation or sodium depletion (furosemide treatment) and enhanced by AVP injected into the medial septal area (N4SA). A stainless steel carmulawas implanted into the medial septal area (NISA) of male Holtzman rats AVP injection enhanced water and sodium intake in a dose-dependent manner. Pretreatment with V-1 antagonist injected into the MSA produced a dose-dependent reduction, whereas prior injection of V-2 antagonist increased, in a dose-dependent manner, the water and sodium responses elicited by the administration of AVP. Both AT(1) and AT(2) antagonists administered into the MSA elicited a concentration-dependent decrease in water and sodium intake induced by AVP, while simultaneous injection of the two antagonists was more effective in decreasing AVP responses. These results also indicate that the increase in water and sodium intake induced by AvT was mediated primarily by MSA AT(1) receptors. (c) 2007 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we investigated the influence of d(CH2)(5)-Tyr (Me)-AVP (AAVP) an antagonist of V-1 receptors of arginine(8)-vasopressin (AVP) and the effects of losartan and CGP42112A (selective ligands of the AT, and AT, angiotensin receptors, respectively) injections into the paraventricular nucleus (PVN) on the thirst effects of AVP stimulation of the lateral septal area (LSA). AVP injection into the LSA increased the water intake in a dose-dependent manner. AAVP injected into the PVN produced a dose-dependent reduction of the drinking responses elicited by LSA administration of AVP. Both the AT(1) and AT(2) ligands administered into the PVN elicited a concentration-dependent inhibition in the water intake induced by AVP injected into the LSA, but losartan was more effective than CGP42112A the increase in the AVP response. These results indicate that LSA dipsogenic effects induced by AVP are mediated primarily by PVN AT(1) receptors. However, doses of losartan were more effective when combined with CGP42112A than when given alone, suggesting that the thirst induced by AVP injections into LSA may involve activation of multiple angiotensin II (ANG II) receptor subtypes. These results also suggests that facilitatory effects of AVP on water intake into the LSA are mediated through the activation of V-receptors and that the inhibitory effect requires V-receptors. Based on the present findings, we suggest that the administration of AVP into the LSA may play a role in the PVN control of water control. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we investigated the influence of d(CH2)(5)-Tyr(Me)-[Arg(8)]vasopressin (AAVP) and [adamanteanacetyl(1),0-ET-DTyr(2), Val(4), aminobutyryl(6), Arg(8,9)]-[Arg(8)]vasopressin (ATAVP), which are antagonists of vasopressin V-1 and V-2 receptors, and the effects of losartan, a selective angiotensin AT(1) receptor antagonist, and CGP42112A, a selective AT(2) receptor antagonist, injected into the lateral septal area (LSA) on thirst and hypertension induced by [Arg(8)]vasopressin (AVP). AAVP and ATAVP injected into the LSA reduced the drinking responses elicited by injecting AVP into the LSA. Both the AT(1) and AT(2) ligands administered into the LSA elicited a concentration-dependent decrease in the water intake induced by AVP injected into the LSA, but losartan was more effective than CGP42112A. The increase in MAP, due to injection of AVP into the LSA, was reduced by prior injection of AAVP from 18 +/- 1 to 6 +/- 1 mm Hg. Losartan injected into the LSA prior to AVP reduced the increase in MAP to 7 +/- 0.8 mm Hg. ATAVP and CGP42112A produced no changes in the pressor effect of AVP. These results suggest that the dipsogenic effects induced by injecting AVP into the LSA were mediated primarily by AT(1) receptors. However, doses of losartan were more effective when combined with CGP42112A than when given alone, suggesting that the thirst induced by AVP injections into LSA may involve activation of multiple AVP and angiotensin II receptor subtypes. The pressor response of AVP was reduced by losartan and by AAVP. CGP42112A and ATAVP did not change the AVP pressor response. These results suggest that facilitator effects of AVP on water intake are mediated through the activation of V-1 receptors and that the inhibitory effect requires V-2 receptors. The involvement of AT(1) and AT(2) receptors can be postulated. Based on the present findings, we suggest that the AVP in the LSA may play a role in the control of water and arterial blood pressure balance. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As several structures of the central nervous system are involved in the control of hydromineral and cardiovascular balance we investigated whether the natriorhexigenic and pressor response induced by the injection of ANG II into the 3rd V could be mediated by vasopressinergic and nitrergic system. Male Holtzman rats weighing 200-250 g with cannulae implanted into the 3rd V were used. The drugs were injected in 0.5 μL over 30-60 sec. Controls were injected with a similar volume of 0.15 M NaCl. ANGII increased the water intake vs control. AVPA injected into 3rd V prior to ANGII decreased the dipsogenic effect of ANGII. L-arginine also decreased the water intake induced by ANGII. AVPA plus L-arginine inhibit the water intake induced by ANGII. 7NIT injected prior to ANGII potentiated the dipsogenic effect of ANGII. Pre-treatment with ANGII increased the sodium ingestion vs control. AVPA decreased the ANGII effect in sodium intake. L-arginine also decreased the natriorhexigenic effect of ANGII. The combination of L-arginine and AVPA inhibit the sodium intake induced by ANGII. 7NIT injected prior to ANGII potentiated the sodium intake induced by ANGII. ANGII induced an increase in Mean Arterial Pressure (MAP) vs control. AVPA and L-arginine induced a decreased in the pressor effect of ANGII. The combination of L-arginine and AVPA inhibit the pressor effect of ANGII. 7NIT injected prior to ANGII into 3rd V potentiated the pressor effect of ANGII. These data suggest that arginine vasopressin V 1 receptors and Nitric Oxide (NO) within the circumventricular structures may be involved in sodium intake and pressor response induced by the activation of ANGII receptors within the circumventricular neurons. These studies revealed the involvement of sodium appetite by utilizing the angiotensinergic, vasopressinergic and nitrergic system in the central regulation of blood pressure. © 2006 Asian Network for Scientific Information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study was performed to investigate the effect of treatment with furosemide on the pressor response induced by intracerebroventricular (i.c.v.) injections of cholinergic (carbachol) and adrenergic (norepinephrine) agonists, angiotensin II (ANGII) and hypertonic saline (HS, 2 M NaCl). The changes induced by furosemide treatment on the pressor response to intravenous (i.v.) norepinephrine, ANGII and arginine vasopressin (AVP) were also studied. Rats with a stainless-steel cannula implanted into the lateral ventricle (LV) were used. Two injections of furosemide (30 mg/kg b.wt. each) were performed 12 and 1 h before the experiments. Treatment with furosemide reduced the pressor response induced by carbachol, norepinephrine and ANGII i.c.v., but no change was observed in the pressor response to i.c.v. 2 M NaCl. The pressor response to i.v. ANGII and norepinephrine, but not AVP, was also reduced after treatment with furosemide. These results show that the treatment with furosemide impairs the pressor responses induced by central or peripheral administration of adrenergic agonist or ANGII, as well as those induced by central cholinergic activation. The results suggest that the treatment with furosemide impairs central and peripheral pressor responses mediated by sympathetic activation and ANGII, but not those produced by AVP. © 1992.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report changes in plasma arginine vasopressin (AVP) and oxytocin (OT) concentrations evoked by the microinjection of L-glutamate (L-glu) into the hypothalamic supraoptic nucleus (SON) and paraventricular nucleus(PVN) of unanesthetized rats, as well as which local mechanisms are involved in their mediation. L-Glu microinjection (10 nmol/100 nl) into the SON increased the circulating levels of both AVP and OT. The AVP increases were blocked by local pretreatment with the selective non-N-methyl-D-aspartate (NMDA) receptor antagonist 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) (2 nmol/100 nl), but it was not affected by pretreatment with the NMDA-receptor antagonist LY235959 (2 nmol/100 nl). The OT response to L-glu microinjection into the SON was blocked by local pretreatment with either NBQX or LY235959. Furthermore, the administration of either the non-NMDA receptor agonist (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid hydrobromide (AMPA) (5 nmol/100 nl) or NMDA receptor agonist NMDA (5 nmol/100 nl) into the SON had no effect on OT baseline plasma levels, but when both agonists were microinjected together these levels were increased. L-Glu microinjection into the PVN did not change circulating levels of either AVP or OT. However, after local pretreatment with LY235959, the L-glu microinjection increased plasma levels of the hormones. The L-glu microinjection into the PVN after the local treatment with NBQX did not affect the circulating AVP and OT levels. Therefore, results suggest the AVP release from the SON is mediated by activation of non-NMDA glutamate receptors, whereas the OT release from this nucleus is mediated by an interaction of NMDA and non-NMDA receptors. The present study also suggests an inhibitory role for NMDA receptors in the PVN on the release of AVP and OT. (Endocrinology 153: 2323-2331, 2012)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chromosomal translocations require formation and joining of DNA double strand breaks (DSBs). These events disrupt the integrity of the genome and are involved in producing leukemias, lymphomas and sarcomas. Translocations are frequent, clonal and recurrent in mature B cell lymphomas, which bear a particularly high DNA damage burden by virtue of activation-induced cytidine deaminase (AID) expression. Despite the ubiquity of genomic rearrangements, the forces that underlie their genesis are not well understood. Here, we provide a detailed description of a new method for studying these events, translocation capture sequencing (TC-Seq). TC-Seq provides the means to document chromosomal rearrangements genome-wide in primary cells, and to discover recombination hotspots. Demonstrating its effectiveness, we successfully estimate the frequency of c-myc/IgH translocations in primary B cells, and identify hotspots of AID-mediated recombination. Furthermore. TC-Seq can be adapted to generate genome-wide rearrangement maps in any cell type and under any condition. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purinergic receptors participate, in almost every cell type, in controlling metabolic activities and many physiological functions including signal transmission, proliferation and differentiation. While most of P2Y receptors induce transient elevations of intracellular calcium concentration by activation of intracellular calcium pools and forward these signals as waves which can also be transmitted into neighboring cells, P2X receptors produce calcium spikes which also include activation of voltage-operating calcium channels. P2Y and P2X receptors induce calcium transients that activate transcription factors responsible for the progress of differentiation through mediators including calmodulin and calcineurin. Expression of P2X2 as well as of P2X7 receptors increases in differentiating neurons and glial cells, respectively. Gene expression silencing assays indicate that these receptors are important for the progress of differentiation and neuronal or glial fate determination. Metabotropic receptors, mostly P2Y1 and P2Y2 subtypes, act on embryonic cells or cells at the neural progenitor stage by inducing proliferation as well as by regulation of neural differentiation through NFAT translocation. The scope of this review is to discuss the roles of purinergic receptor-induced calcium spike and wave activity and its codification in neurodevelopmental and neurodifferentiation processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

LRP1 modulates APP trafficking and metabolism within compartments of the secretory pathway The amyloid precursor protein (APP) is the parent protein to the amyloid beta peptide (Abeta) and is a central player in Alzheimer’s disease (AD) pathology. Abeta liberation depends on APP cleavage by beta- and gamma-secretases. To date, only a unilateral view of APP processing exists, excluding other proteins, which might be transported together and/or processed dependent on each other by the secretases described above. The low density lipoprotein receptor related protein 1 (LRP1) was shown to function as such a mediator of APP processing at multiple steps. Newly synthesized LRP1 can interact with APP, implying an interaction between these two proteins early in the secretory pathway. Therefore, we wanted to investigate whether LRP1 can mediate APP trafficking along the secretory pathway, and, if so, whether it affects APP processing. Indeed, we demonstrate that APP trafficking is strongly influenced by LRP1 transport through the endoplasmic reticulum (ER) and Golgi compartments. LRP1-constructs with ER- and Golgi-retention motifs (LRP-CT KKAA, LRP-CT KKFF) had the capacity to retard APP trafficking at the respective steps in the secretory pathway. Here, we provide evidence that APP metabolism occurs in close conjunction with LRP1 trafficking, highlighting a new role of lipoprotein receptors in neurodegenerative diseases. Increased AICD generation is ineffective in nuclear translocation and transcriptional activity A sequence of amyloid precursor protein (APP) cleavages gives rise to the APP intracellular domain (AICD) together with amyloid beta peptide (Abeta) and/or p3 fragment. One of the environmental factors identified favouring the accumulation of AICD appears to be a rise in intracellular pH. This accumulation is a result of an abrogated cleavage event and does not extend to other secretase substrates. AICD can activate the transcription of artificially expressed constructs and many downstream gene targets have been discussed. Here we further identified the metabolism and subcellular localization of the constructs used in this well documented gene reporter assay. We also co-examined the mechanistic lead up to the AICD accumulation and explored possible significances for its increased expression. We found that most of the AICD generated under pH neutralized conditions is likely that cleaved from C83. Furthermore, the AICD surplus is not transcriptionally active but rather remains membrane tethered and free in the cytosol where it interacts with Fe65. However, Fe65 is still essential in AICD mediated transcriptional transactivation although its exact role in this set of events is unclear.