956 resultados para Vascular changes
Resumo:
Contrast enhancement enables the verification of several pathological conditions that lead to vascular changes and/or breakdown of the blood-brain barrier. Examples of diseases that cause these disorders are: neoplastic diseases, vascular communications, active inflammation and cerebral ischemia. Several contrast enhancements located peripherically to cerebral lobes, in the topography of brain sulci and gyri, were identified on tomographic scan of twelve healthy cats that had their health confirmed through history, general and neurologic physical examination and polymerase chain reaction for feline leukemia (FeLV) and immunodeficiency (FIV) virus. This study aims to describe the tomographic contrast enhancement findings, which showed an identical appearance to the pia mater and arachnoid enhancement, also called leptomeninges. This finding is generally considered related to leptomeningeal diseases such as meningitis and neoplastic disease. However, in dogs, the leptomeningeal enhancement has already been described in healthy animals. This finding has a great importance in the interpretation of tomographic images of these animals since, so far, in the presence of these enhancements, meningeal disorders were suggested. Thus, the verification of other tomographic findings and the combination with other diagnostic methods are of great importance for the diagnosis of leptomeningeal disease.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
PURPOSE: To evaluate histopathological alterations triggered by brain death and associated trauma on different solid organs in rats. METHODS: Male Wistar rats (n=37) were anesthetized with isoflurane, intubated and mechanically ventilated. A trepanation was performed and a balloon catheter inserted into intracraninal cavity and rapidly inflated with saline to induce brain death. After induction, rats were monitored for 30, 180, and 360 min for hemodynamic parameters and exsanguinated from abdominal aorta. Heart, lung, liver, and kidney were removed and fixed in paraffin to evaluation of histological alterations (H&E). Sham-operated rats were trepanned only and used as control group. RESULTS: Brain dead rats showed a hemodynamic instability with hypertensive episode in the first minute after the induction followed by hypotension for approximately 1 h. Histological analyses showed that brain death induces vascular congestion in heart (p<0.05), and lung (p<0.05); lung alveolar edema (p=0.001), kidney tubular edema (p<0.05); and leukocyte infiltration in liver (p<0.05). CONCLUSIONS: Brain death induces hemodynamic instability associated with vascular changes in solid organs and compromises most severely the lungs. However, brain death associated trauma triggers important pathophysiological alterations in these organs.
Resumo:
Background. Chronic allograft vasculopathy (CAV) is an important cause of graft loss. Considering the immune inflammatory events involved in the development of CAV, therapeutic approaches to target this process are of relevance. Human amniotic fluid derived stem cells (hAFSCs), a class of fetal, pluripotent stem cells with intermediate characteristics between embryonic and adult stem cells, display immunomodulatory properties. hAFSCs express mesenchymal and embryonic markers, show high proliferation rates; however, they do not induce tumor formation, and their use does not raise ethical issues. Thus, we sought to investigate the effect of hAFSC on CAV in a model of aorta transplantation. Methods. Orthotopic aorta transplantation was performed using Fisher (F344) rats as donors and Lewis rats as recipients. Rats were divided into three groups: syngeneic (SYNG), untreated F344 receiving aorta from F344 (n = 8); allogeneic (ALLO), Lewis rats receiving allogeneic aorta from F344 (n = 8); and ALLO + hAFSC, ALLO rats treated with hAFSC (10(6) cells; n = 8). Histological analysis and immunohistochemistry were performed 30 days posttransplantation. Results. The ALLO group developed a robust aortic neointimal formation (208.7 +/- 25.4 gm) accompanied by a significant high number of ED1(+) (4845 +/- 841 cells/mm(2)) and CD43(+) cells (4064 +/- 563 cells/mm(2)), and enhanced expression of a-smooth muscle actin in the neointima (25 +/- 6%). Treatment with hAFSC diminished neointimal thickness (180.7 +/- 23.7 mu m) and induced a significant decrease of ED1(+) (1100 +/- 276 cells/mm(2)), CD43(+) cells (1080 +/- 309 cells/mu m(2)), and alpha-smooth muscle actin expression 8 +/- 3% in the neointima. Conclusions. These preliminary results showed that hAFSC suppressed inflammation and myofibroblast migration to the intima, which may contribute to ameliorate vascular changes in CAV.
Resumo:
La studio dell’Anatomia umana presenta una varietà di sfaccettature, che sono alla base della reale comprensione del corpo umano; ovvero la vera anatomia non è quella rappresentata nei testi ma quella che appare durante la dissezione o nelle più sofisticate analisi di immagine. Lo scopo di questa tesi è stato quello di rivisitare alcune situazioni vascolari che possono andare incontro a variazioni e cercare di comprendere, anche con l’aiuto della bibliografia, se tali variazioni possono essere causa o epifenomeni di patologie a carico delle arterie affette dalle variazioni stesse o di territori da esse dipendenti per l’afflusso sanguigno. E’ stata condotta una analisi su preparati cadaverici in particolare in tre distretti: a) addome e tripode celiaco/mesenterica superiore; b) circolo cerebrale; d) orco aortico.
Resumo:
Visualization of the complex lung microvasculature and resolution of its three-dimensional architecture remains a difficult experimental challenge. We present a novel fluorescent microscopy technique to visualize both the normal and diseased pulmonary microvasculature. Physiologically relevant pulmonary perfusion conditions were applied using a low-viscosity perfusate infused under continuous airway ventilation. Intensely fluorescent polystyrene microspheres, confined to the vascular space, were imaged through confocal optical sectioning of 200 microm-thick lung sections. We applied this technique to rat lungs and the markedly enhanced depth of field in projected images allowed us to follow vascular branching patterns in both normal lungs and lungs from animals with experimentally induced pulmonary arterial hypertension. In addition, this method allowed complementary immunostaining and identification of cellular components surrounding the blood vessels. Fluorescent microangiography is a widely applicable and quantitative tool for the study of vascular changes in animal models of pulmonary disease.
Resumo:
Changes in the retinal microcirculation are associated with hypertension and predict cardiovascular mortality. There are few data describing the impact of antihypertensive therapy on retinal vascular changes. This substudy of the Anglo-Scandinavian Cardiac Outcomes Trial compared the effects of an amlodipine-based regimen (373 patients) with an atenolol-based regimen (347 patients) on retinal microvascular measurements made from fundus photographs. The retinal photographs were taken at a stage in the trial when treatments were stable and blood pressure was well controlled. Amlodipine-based treatment was associated with a smaller arteriolar length:diameter ratio than atenolol-based treatment (13.32 [10.75 to 16.04] versus 14.12 [11.27 to 17.81], median [interquartile range]; P<0.01). The association remained significant after adjustment for age, sex, cholesterol, systolic and diastolic blood pressures, body mass index, smoking, and statin treatment. This effect appeared to be largely attributable to shorter retinal arteriolar segment lengths in the amlodipine-treated group and is best explained by the vasodilator effects of amlodipine causing the visible emergence of branching side vessels. Photographic assessment of the retinal vascular network may be a useful approach to evaluating microvascular structural responses in clinical trials of antihypertensive therapy.
Resumo:
Canine granulocytic anaplasmosis (CGA) is caused by the rickettsial microorganism Anaplasma phagocytophilum. CGA is typically characterized by fever, thrombocytopenia, lethargy, anorexia, arthropy, and other nonspecific clinical signs. Skin lesions have been described in naturally infected lambs and humans. The pathophysiology of CGA is not entirely clear, and the persistence of the organism after the resolution of clinical signs has been described. The aim of the study was to investigate if A. phagocytophilum can be detected in canine lesional skin biopsies from A. phagocytophilum-seropositive dogs with etiologically unclear skin lesions that improved after the treatment with doxycycline. Paraffin-embedded lesional skin biopsies were allocated into separate groups: biopsies from A. phagocytophilum-seropositive dogs responsive to treatment with doxycycline (n=12), biopsies from A. phagocytophilum-seronegative dogs (n=2), and biopsies in which skin lesions histopathologically resembled a tick bite (n=10). The serological status of the latter group was unknown. Histology of the seropositive and seronegative dog skin lesions did not indicate an etiology. DNA was extracted, and a conventional PCR for partial 16S rRNA gene was performed. Anaplasma phagocytophilum DNA was amplified from 4/12 seropositive dogs' skin biopsies. All sequences were 100% identical to the prototype A. phagocytophilum human strain (GenBank accession number U02521). Anaplasma phagocytophilum was not amplified from the 2 seronegative and 10 suspected tick bite dogs. Serum antibody titers of the PCR-positive dogs ranged from 1:200 to 1:2048. Histopathologically, a mild-to-moderate perivascular to interstitial dermatitis composed of a mixed cellular infiltrate and mild-to-moderate edema was seen in all seropositive dogs. In 8/12 seropositive dogs, vascular changes as vasculopathy, fibrinoid necrosis of the vessel walls, and leukocytoclastic changes were observed. In summary, our results support the hypothesis that the persistence of A. phagocytophilum in the skin may be causative for otherwise unexplained skin lesions in seropositive dogs.
Resumo:
Atrial septal defects (ASDs) are one of the most frequent congenital cardiac malformations, accounting for about 8-10% of all congenital heart defects. The prevalence of pulmonary arterial hypertension (PAH) in adults with an ASD is 8-10%. Different clinical PAH scenarios can be encountered. At one end of the spectrum are adults with no or only mild pulmonary vascular disease and a large shunt. These are patients who can safely undergo shunt closure. In the elderly, mild residual pulmonary hypertension after shunt closure is the rule. At the other end of the spectrum are adults with severe, irreversible pulmonary vascular disease, shunt reversal and chronic cyanosis, that is, Eisenmenger syndrome. These are patients who need to be managed medically. The challenge is to properly classify ASD patients with PAH falling in between the two ends of the spectrum as the ones with advanced, but reversible pulmonary vascular disease amenable to repair, versus the ones with progressive pulmonary vascular disease not responding to shunt closure. There are concerns that adults with progressive pulmonary vascular disease have worse outcomes after shunt closure than patients not undergoing shunt closure. Due to the correlation of pulmonary vascular changes and pulmonary hemodynamics, cardiac catheterization is used in the decision-making process. It is important to consider the hemodynamic data in the context of the clinical picture, the defect anatomy and further noninvasive tests when evaluating the option of shunt closure in these patients.
Resumo:
Human aging is impacted severely by cardiovascular disease and significantly but less overtly by renal dysfunction. Advanced glycation endproducts (AGEs) have been linked to tissue damage in diabetes and aging, and the AGE inhibitor aminoguanidine (AG) has been shown to inhibit renal and vascular pathology in diabetic animals. In the present study, the effects of AG on aging-related renal and vascular changes and AGE accumulation were studied in nondiabetic female Sprague-Dawley (S-D) and Fischer 344 (F344) rats treated with AG (0.1% in drinking water) for 18 mo. Significant increases in the AGE content in aged cardiac (P < 0.05), aortic (P < 0.005), and renal (P < 0.05) tissues were prevented by AG treatment (P < 0.05 for each tissue). A marked age-linked vasodilatory impairment in response to acetylcholine and nitroglycerine was prevented by AG treatment (P < 0.005), as was an age-related cardiac hypertrophy evident in both strains (P < 0.05). While creatinine clearance was unaffected by aging in these studies, the AGE/ creatinine clearance ratio declined 3-fold in old rats vs. young rats (S-D, P < 0.05; F344, P < 0.01), while it declined significantly less in AG-treated old rats (P < 0.05). In S-D but not in F344 rats, a significant (P < 0.05) age-linked 24% nephron loss was completely prevented by AG treatment, and glomerular sclerosis was markedly suppressed (P < 0.01). Age-related albuminuria and proteinuria were markedly inhibited by AG in both strains (S-D, P < 0.01; F344, P < 0.01). These data suggest that early interference with AGE accumulation by AG treatment may impart significant protection against the progressive cardiovascular and renal decline afflicting the last decades of life.
Resumo:
This thesis sets out to examine in detail the condition of systemic hypertension (high Blood Pressure) in relation to optometric practice in the United Kingdom. Systemic hypertension, which is asymptomatic in the early stages, is diagnosed from the Blood Pressure (BP) measurement recorded by a sphygmomanometer and/or from the complications that have developed in target organs. Optometric practice based surveys revealed that diagnosed systemic hypertension was the most prevalent cardiovascular medical condition (20.5%). Measurement of BP of patients in this sample revealed that if an optometrist included sphygmomanometry into the sight examination then at least one patient each day would be referred for suspect systemic hypertension. Optometric opinion felt that the measurement of BP in optometric practice would advance the profession, being appreciated by both patients and General Practitioners (GPs), but was felt to be an unnecessary routine procedure. The present sight examination for the systemic hypertensive is similar to that of the normotensive patient, but may involve an altered fundus examination and a visual field test. The GPs were in favour of optometric BP measurement and a future role in the share care management of the systemic hypertensive. The application of a new pictorial grading scale for the grading of vascular changes associated with pre-malignant systemic hypertension was found to be both accurate and reliable. Clinical trial of the grading scale in optometric practice found positive correlations between BP and increasing severity of the retinal vascular features. The subtle pre-malignant vascular changes require reliable accurate detection and analysis to assist in the management of the systemic hypertensive patient. Vessel width was shown to decrease with increasing age. Image analysis of the A/V ratio, arteriolar tortuosity and focal calibre changes revealed a positive correlation to the patient's BP (p<0.001). The retinal vasculature is relatively stable longitudinally with only minor changes in response to early disease states. Age and elevated BP increased a patient's risk of developing systemic medical conditions over a two-year period. The application of the pictorial grading scale to optometric practice and training the optometrist in the use of sphygmomanometry would improve the management of the systemic hypertensive patient in optometric practice. Future advances in image analysis hold substantial benefits for the detection and monitoring of subtle vascular changes associated with systemic hypertension.
Resumo:
The limbal vascular response to extended contact lens wear was examined in a group comparative study initially intended to last eighteen months. After six months all patients wearing contact lenses had presented with micro-epithelial cysts. This unanticipated occurrence of the micro-epithelial-cysts necessitated termination of the study, and limited the quantity of data collected. However, sufficient results were available to allow a limited description of •the vascular response to this form of contact lens wear. Interpretations of the date collected ore discussed in relation to suggested vasostimulating factors in the cornea. The micro-epithelial cysts observed after extended wear were classified and their rate of recovery recorded. A further clinical study was undertaken to observe cysts in both contact lens - and non contact lens-wearing eyes. Cysts were observed in every category of patient, although the characteristic patterns varied. These observations of micro-epithelial cysts are discussed with respect to the aetiopathogeneses of corneal epithelial cystic disorders. Subsequently, attempts were made to induce cysts in rabbit corneae by extended contact lens wear. Clinical observations revealed cyst-like appearances. Histological sections did not contain cysts but did exhibit signs characteristic •of cystic disorders of the corneal epithelium. In general, the results from the study indicate that extended wear is subjectively acceptable to contact lens wearers. However, the objective findings of significant vascular changes, micro-epithelial cysts and cases of acute red eye response cast considerable doubt on the recommendation of extended wear contact lenses for purely cosmetic applications.
Resumo:
We examined the intrinsic signals in response to grating stimuli in order to determine whether the light-evoked intrinsic signals of the retina are due to changes in the photoreceptor activities induced by the image projected on to the retina or are due to neural activities of the inner retina. The retinas of the left eye of 12 cats under general anesthesia were examined by a functional imaging fundus camera. Near infrared light was used to monitor the reflectance changes (RCs) of the retina. Vertical grating were used to stimulate the retina at 4 Hz. The spatial frequencies of the gratings were 0.05, 0.11, 0.22, 0.43, 0.86, 1.73, and 3.46 cycles/degree (cpd). Ten images were averaged and used to analyze the RCs to obtain the peak value (PV) of a two dimensional fast Fourier transfer of the RCs. The wavefront aberrations (WA) were measured with a compact wavefront aberrometer and the spatial modulation transfer function (MTF) of the eye was calculated. The retinal reflectance image had a grating pattern. The PV of the spatial sensitivity curve was highest at low spatial frequencies (0.05 and 0.11 cpd), and the sensitivity decreased steeply with an increase in the spatial frequency. RCs were not detectable at 3.46 cpd. The MTF decreased gradually with increases in the spatial frequencies and was 0.68 at 3.46 cpd. The reflectance pattern of the retinal intrinsic signal elicited by grating stimuli of different spatial frequencies was different from that of the MTF. This suggests that the intrinsic signal represents not only the response of the photoreceptors but also other neuronal or vascular changes in the retina.
Resumo:
Background— Fetal growth restriction (FGR) affects 5% to 10% of newborns and is associated with increased cardiovascular mortality in adulthood. The most commonly accepted hypothesis is that fetal metabolic programming leads secondarily to diseases associated with cardiovascular disease, such as obesity, diabetes mellitus, and hypertension. Our main objective was to evaluate the alternative hypothesis that FGR induces primary cardiac changes that persist into childhood. Methods and Results— Within a cohort of fetuses with growth restriction identified in fetal life and followed up into childhood, we randomly selected 80 subjects with FGR and compared them with 120 normally grown fetuses, matched for gender, birth date, and gestational age at birth. Cardiovascular assessment was performed in childhood (mean age of 5 years). Compared with control subjects, children with FGR had a different cardiac shape, with increased transversal diameters and more globular cardiac ventricles. Although left ejection fraction was similar among the study groups, stroke volume was reduced significantly, which was compensated for by an increased heart rate to maintain output in severe FGR. This was associated with subclinical longitudinal systolic dysfunction (decreased myocardial peak velocities) and diastolic changes (increased E/E' ratio and E deceleration time). Children with FGR also had higher blood pressure and increased intima-media thickness. For all parameters evaluated, there was a linear increase with the severity of growth restriction. Conclusions— These findings suggest that FGR induces primary cardiac and vascular changes that could explain the increased predisposition to cardiovascular disease in adult life. If these results are confirmed, the impact of strategies with beneficial effects on cardiac remodeling should be explored in children with FGR.