992 resultados para Variability Models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tropical cyclones are affected by a large number of climatic factors, which translates into complex patterns of occurrence. The variability of annual metrics of tropical-cyclone activity has been intensively studied, in particular since the sudden activation of the North Atlantic in the mid 1990’s. We provide first a swift overview on previous work by diverse authors about these annual metrics for the North-Atlantic basin, where the natural variability of the phenomenon, the existence of trends, the drawbacks of the records, and the influence of global warming have been the subject of interesting debates. Next, we present an alternative approach that does not focus on seasonal features but on the characteristics of single events [Corral et al., Nature Phys. 6, 693 (2010)]. It is argued that the individual-storm power dissipation index (PDI) constitutes a natural way to describe each event, and further, that the PDI statistics yields a robust law for the occurrence of tropical cyclones in terms of a power law. In this context, methods of fitting these distributions are discussed. As an important extension to this work we introduce a distribution function that models the whole range of the PDI density (excluding incompleteness effects at the smallest values), the gamma distribution, consisting in a powerlaw with an exponential decay at the tail. The characteristic scale of this decay, represented by the cutoff parameter, provides very valuable information on the finiteness size of the basin, via the largest values of the PDIs that the basin can sustain. We use the gamma fit to evaluate the influence of sea surface temperature (SST) on the occurrence of extreme PDI values, for which we find an increase around 50 % in the values of these basin-wide events for a 0.49 C SST average difference. Similar findings are observed for the effects of the positive phase of the Atlantic multidecadal oscillation and the number of hurricanes in a season on the PDI distribution. In the case of the El Niño Southern oscillation (ENSO), positive and negative values of the multivariate ENSO index do not have a significant effect on the PDI distribution; however, when only extreme values of the index are used, it is found that the presence of El Niño decreases the PDI of the most extreme hurricanes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Significant quantities of antibiotics are used in all parts of the globe to treat diseases with bacterial origins. After ingestion, antibiotics are excreted by the patient and transmitted in due course to the aquatic environment. This study examined temporal fluctuations (monthly time scale) in antibiotic sources (ambulatory sales and data from a hospital dispensary) for Lausanne, Switzerland. Source variability (i.e., antibiotic consumption, monthly data for 2006-2010) were examined in detail for nine antibiotics--azithromycin, ciprofloxacin, clarithromycin, clindamycin, metronidazole, norfloxacin, ofloxacin, sulfamethoxazole and trimethoprim, from which two main conclusions were reached. First, some substances--azithromycin, clarithromycin, ciprofloxacin--displayed high seasonality in their consumption, with the winter peak being up to three times higher than the summer minimum. This seasonality in consumption resulted in seasonality in Predicted Environmental Concentrations (PECs). In addition, the seasonality in PECs was also influenced by that in the base wastewater flow. Second, the contribution of hospitals to the total load of antibiotics reaching the Lausanne Wastewater Treatment Plant (WTP) fluctuated markedly on a monthly time scale, but with no seasonal pattern detected. That is, there was no connection between fluctuations in ambulatory and hospital consumption for the substances investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Murine models and association studies in eating disorder (ED) patients have shown a role for the brain-derived neurotrophic factor (BDNF) in eating behavior. Some studies have shown association of BDNF -270C/T single-nucleotide polymorphism (SNP) with bulimia nervosa (BN), while BDNF Val66Met variant has been shown to be associated with both BN and anorexia nervosa (AN). To further test the role of this neurotrophin in humans, we screened 36 SNPs in the BDNF gene and tested for their association with ED and plasma BDNF levels as a quantitative trait. We performed a family-based association study in 106 ED nuclear families and analyzed BDNF blood levels in 110 ED patients and in 50 sib pairs discordant for ED. The rs7124442T/rs11030102C/rs11030119G haplotype was found associated with high BDNF levels (mean BDNF TCG haplotype carriers = 43.6 ng/ml vs. mean others 23.0 ng/ml, P = 0.016) and BN (Z = 2.64; P recessive = 0.008), and the rs7934165A/270T haplotype was associated with AN (Z =-2.64; P additive = 0.008). The comparison of BDNF levels in 50 ED discordant sib pairs showed elevated plasma BDNF levels for the ED group (mean controls = 41.0 vs. mean ED = 52.7; P = 0.004). Our data strongly suggest that altered BDNF levels modulated by BDNF gene variability are associated with the susceptibility to ED, providing physiological evidence that BDNF plays a role in the development of AN and BN, and strongly arguing for its involvement in eating behavior and body weight regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we describe the usage of bilinear statistical models as a means of factoring the shape variability into two components attributed to inter-subject variation and to the intrinsic dynamics of the human heart. We show that it is feasible to reconstruct the shape of the heart at discrete points in the cardiac cycle. Provided we are given a small number of shape instances representing the same heart atdifferent points in the same cycle, we can use the bilinearmodel to establish this. Using a temporal and a spatial alignment step in the preprocessing of the shapes, around half of the reconstruction errors were on the order of the axial image resolution of 2 mm, and over 90% was within 3.5 mm. From this, weconclude that the dynamics were indeed separated from theinter-subject variability in our dataset.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adherence to fibrinogen and fibronectin plays a crucial role in Staphylococcus aureus experimental endocarditis. Previous genetic studies have shown that infection and carriage isolates do not systematically differ in their virulence-related genes, including genes conferring adherence, such as clfA and fnbA. We set out to determine the range of adherence phenotypes in carriage isolates of S. aureus, to compare the adherence of these isolates to the adherence of infection isolates, and to determine the relationship between adherence and infectivity in a rat model of experimental endocarditis. A total of 133 healthy carriage isolates were screened for in vitro adherence to fibrinogen and fibronectin, and 30 isolates were randomly chosen for further investigation. These 30 isolates were compared to 30 infective endocarditis isolates and 30 blood culture isolates. The infectivities of the carriage isolates, which displayed either extremely low or high adherence to fibrinogen and fibronectin, were tested using a rat model of experimental endocarditis. The levels of adherence to both fibrinogen and fibronectin were very similar for isolates from healthy carriers and members of the two groups of infection isolates. All three groups of isolates showed a wide range of adherence to fibrinogen and fibronectin. Moreover, the carriage isolates that showed minimal adherence and the carriage isolates that showed strong adherence had the same infectivity in experimental endocarditis. Adherence was proven to be important for pathogenesis in experimental endocarditis, but even the least adherent carriage strains had the ability to induce infection. We discuss the roles of differential gene expression, human host factors, and gene redundancy in resolving this apparent paradox.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a general equilibrium model of money demand wherethe velocity of money changes in response to endogenous fluctuations in the interest rate. The parameter space can be divided into two subsets: one where velocity is constant and equal to one as in cash-in-advance models, and another one where velocity fluctuates as in Baumol (1952). Despite its simplicity, in terms of paramaters to calibrate, the model performs surprisingly well. In particular, it approximates the variability of money velocity observed in the U.S. for the post-war period. The model is then used to analyze the welfare costs of inflation under uncertainty. This application calculates the errors derived from computing the costs of inflation with deterministic models. It turns out that the size of this difference is small, at least for the levels of uncertainty estimated for the U.S. economy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Second cancer risk assessment for radiotherapy is controversial due to the large uncertainties of the dose-response relationship. This could be improved by a better assessment of the peripheral doses to healthy organs in future epidemiological studies. In this framework, we developed a simple Monte Carlo (MC) model of the Siemens Primus 6 MV linac for both open and wedged fields that we then validated with dose profiles measured in a water tank up to 30 cm from the central axis. The differences between the measured and calculated doses were comparable to other more complex MC models and never exceeded 50%. We then compared our simple MC model with the peripheral dose profiles of five different linacs with different collimation systems. We found that the peripheral dose between two linacs could differ up to a factor of 9 for small fields (5 × 5 cm(2)) and up to a factor of 10 for wedged fields. Considering that an uncertainty of 50% in dose estimation could be acceptable in the context of risk assessment, the MC model can be used as a generic model for large open fields (≥10 × 10 cm(2)) only. The uncertainties in peripheral doses should be considered in future epidemiological studies when designing the width of the dose bins to stratify the risk as a function of the dose.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biological monitoring of occupational exposure is characterized by important variability, due both to variability in the environment and to biological differences between workers. A quantitative description and understanding of this variability is important for a dependable application of biological monitoring. This work describes this variability,using a toxicokinetic model, for a large range of chemicals for which reference biological reference values exist. A toxicokinetic compartmental model describing both the parent compound and its metabolites was used. For each chemical, compartments were given physiological meaning. Models were elaborated based on physiological, physicochemical, and biochemical data when available, and on half-lives and central compartment concentrations when not available. Fourteen chemicals were studied (arsenic, cadmium, carbon monoxide, chromium, cobalt, ethylbenzene, ethyleneglycol monomethylether, fluorides, lead, mercury, methyl isobutyl ketone, penthachlorophenol, phenol, and toluene), representing 20 biological indicators. Occupational exposures were simulated using Monte Carlo techniques with realistic distributions of both individual physiological parameters and exposure conditions. Resulting biological indicator levels were then analyzed to identify the contribution of environmental and biological variability to total variability. Comparison of predicted biological indicator levels with biological exposure limits showed a high correlation with the model for 19 out of 20 indicators. Variability associated with changes in exposure levels (GSD of 1.5 and 2.0) is shown to be mainly influenced by the kinetics of the biological indicator. Thus, with regard to variability, we can conclude that, for the 14 chemicals modeled, biological monitoring would be preferable to air monitoring. For short half-lives (less than 7 hr), this is very similar to the environmental variability. However, for longer half-lives, estimated variability decreased. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resource: tables detailing the CBTK models for all 14 chemicals and the symbol nomenclature that was used.] [Authors]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To assess tobacco, alcohol, cannabis and benzodiazepine use in methadone maintenance treatment (MMT) as potential sources of variability in methadone pharmacokinetics. METHODS: Trough plasma (R)- and (S)-methadone concentrations were measured on 77 Australian and 74 Swiss MMT patients with no additional medications other than benzodiazepines. Simple and multiple regression analyses were performed for the primary metric, plasma methadone concentration/dose. RESULTS: Cannabis and methadone dose were significantly associated with lower 24-h plasma (R)- and (S)-methadone concentrations/dose. The models containing these variables explained 14-16% and 17-25% of the variation in (R)- and (S)-methadone concentration/dose, respectively. Analysis of 61 patients using only CYP3A4 metabolised benzodiazepines showed this class to be associated with higher (R)-concentration/dose, which is consistent with a potential competitive inhibition of CYP3A4. CONCLUSION: Cannabis use and higher methadone doses in MMT could in part be a response to-or a cause of-more rapid methadone clearance. The effects of cannabis and benzodiazepines should be controlled for in future studies on methadone pharmacokinetics in MMT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uncertainty quantification of petroleum reservoir models is one of the present challenges, which is usually approached with a wide range of geostatistical tools linked with statistical optimisation or/and inference algorithms. The paper considers a data driven approach in modelling uncertainty in spatial predictions. Proposed semi-supervised Support Vector Regression (SVR) model has demonstrated its capability to represent realistic features and describe stochastic variability and non-uniqueness of spatial properties. It is able to capture and preserve key spatial dependencies such as connectivity, which is often difficult to achieve with two-point geostatistical models. Semi-supervised SVR is designed to integrate various kinds of conditioning data and learn dependences from them. A stochastic semi-supervised SVR model is integrated into a Bayesian framework to quantify uncertainty with multiple models fitted to dynamic observations. The developed approach is illustrated with a reservoir case study. The resulting probabilistic production forecasts are described by uncertainty envelopes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The estimation of non available soil variables through the knowledge of other related measured variables can be achieved through pedotransfer functions (PTF) mainly saving time and reducing cost. Great differences among soils, however, can yield non desirable results when applying this method. This study discusses the application of developed PTFs by several authors using a variety of soils of different characteristics, to evaluate soil water contents of two Brazilian lowland soils. Comparisons are made between PTF evaluated data and field measured data, using statistical and geostatistical tools, like mean error, root mean square error, semivariogram, cross-validation, and regression coefficient. The eight tested PTFs to evaluate gravimetric soil water contents (Ug) at the tensions of 33 kPa and 1,500 kPa presented a tendency to overestimate Ug 33 kPa and underestimate Ug1,500 kPa. The PTFs were ranked according to their performance and also with respect to their potential in describing the structure of the spatial variability of the set of measured values. Although none of the PTFs have changed the distribution pattern of the data, all resulted in mean and variance statistically different from those observed for all measured values. The PTFs that presented the best predictive values of Ug33 kPa and Ug1,500 kPa were not the same that had the best performance to reproduce the structure of spatial variability of these variables.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In groundwater applications, Monte Carlo methods are employed to model the uncertainty on geological parameters. However, their brute-force application becomes computationally prohibitive for highly detailed geological descriptions, complex physical processes, and a large number of realizations. The Distance Kernel Method (DKM) overcomes this issue by clustering the realizations in a multidimensional space based on the flow responses obtained by means of an approximate (computationally cheaper) model; then, the uncertainty is estimated from the exact responses that are computed only for one representative realization per cluster (the medoid). Usually, DKM is employed to decrease the size of the sample of realizations that are considered to estimate the uncertainty. We propose to use the information from the approximate responses for uncertainty quantification. The subset of exact solutions provided by DKM is then employed to construct an error model and correct the potential bias of the approximate model. Two error models are devised that both employ the difference between approximate and exact medoid solutions, but differ in the way medoid errors are interpolated to correct the whole set of realizations. The Local Error Model rests upon the clustering defined by DKM and can be seen as a natural way to account for intra-cluster variability; the Global Error Model employs a linear interpolation of all medoid errors regardless of the cluster to which the single realization belongs. These error models are evaluated for an idealized pollution problem in which the uncertainty of the breakthrough curve needs to be estimated. For this numerical test case, we demonstrate that the error models improve the uncertainty quantification provided by the DKM algorithm and are effective in correcting the bias of the estimate computed solely from the MsFV results. The framework presented here is not specific to the methods considered and can be applied to other combinations of approximate models and techniques to select a subset of realizations

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil properties have an enormous impact on economic and environmental aspects of agricultural production. Quantitative relationships between soil properties and the factors that influence their variability are the basis of digital soil mapping. The predictive models of soil properties evaluated in this work are statistical (multiple linear regression-MLR) and geostatistical (ordinary kriging and co-kriging). The study was conducted in the municipality of Bom Jardim, RJ, using a soil database with 208 sampling points. Predictive models were evaluated for sand, silt and clay fractions, pH in water and organic carbon at six depths according to the specifications of the consortium of digital soil mapping at the global level (GlobalSoilMap). Continuous covariates and categorical predictors were used and their contributions to the model assessed. Only the environmental covariates elevation, aspect, stream power index (SPI), soil wetness index (SWI), normalized difference vegetation index (NDVI), and b3/b2 band ratio were significantly correlated with soil properties. The predictive models had a mean coefficient of determination of 0.21. Best results were obtained with the geostatistical predictive models, where the highest coefficient of determination 0.43 was associated with sand properties between 60 to 100 cm deep. The use of a sparse data set of soil properties for digital mapping can explain only part of the spatial variation of these properties. The results may be related to the sampling density and the quantity and quality of the environmental covariates and predictive models used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Traditionally, the common reserving methods used by the non-life actuaries are based on the assumption that future claims are going to behave in the same way as they did in the past. There are two main sources of variability in the processus of development of the claims: the variability of the speed with which the claims are settled and the variability between the severity of the claims from different accident years. High changes in these processes will generate distortions in the estimation of the claims reserves. The main objective of this thesis is to provide an indicator which firstly identifies and quantifies these two influences and secondly to determine which model is adequate for a specific situation. Two stochastic models were analysed and the predictive distributions of the future claims were obtained. The main advantage of the stochastic models is that they provide measures of variability of the reserves estimates. The first model (PDM) combines one conjugate family Dirichlet - Multinomial with the Poisson distribution. The second model (NBDM) improves the first one by combining two conjugate families Poisson -Gamma (for distribution of the ultimate amounts) and Dirichlet Multinomial (for distribution of the incremental claims payments). It was found that the second model allows to find the speed variability in the reporting process and development of the claims severity as function of two above mentioned distributions' parameters. These are the shape parameter of the Gamma distribution and the Dirichlet parameter. Depending on the relation between them we can decide on the adequacy of the claims reserve estimation method. The parameters have been estimated by the Methods of Moments and Maximum Likelihood. The results were tested using chosen simulation data and then using real data originating from the three lines of business: Property/Casualty, General Liability, and Accident Insurance. These data include different developments and specificities. The outcome of the thesis shows that when the Dirichlet parameter is greater than the shape parameter of the Gamma, resulting in a model with positive correlation between the past and future claims payments, suggests the Chain-Ladder method as appropriate for the claims reserve estimation. In terms of claims reserves, if the cumulated payments are high the positive correlation will imply high expectations for the future payments resulting in high claims reserves estimates. The negative correlation appears when the Dirichlet parameter is lower than the shape parameter of the Gamma, meaning low expected future payments for the same high observed cumulated payments. This corresponds to the situation when claims are reported rapidly and fewer claims remain expected subsequently. The extreme case appears in the situation when all claims are reported at the same time leading to expectations for the future payments of zero or equal to the aggregated amount of the ultimate paid claims. For this latter case, the Chain-Ladder is not recommended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT The study of soil chemical and physical properties variability is important for suitable management practices. The aim of this study was to evaluate the spatial variability of soil properties in the Malhada do Meio settlement to subsidize soil use planning. The settlement is located in Chapadinha, MA, Brazil, and has an area of 630.86 ha. The vegetation is seasonal submontane deciduous forest and steppe savanna. The geology is formed of sandstones and siltstones of theItapecuru Formation and by colluvial and alluvial deposits. The relief consists of hills with rounded and flat tops with an average altitude of 67 m, and frequently covered over by ferruginous duricrusts. A total of 183 georeferenced soil samples were collected at the depth of 0.00-0.20 m inPlintossolos, Neossolo andGleissolo. The following chemical variables were analyzed: pH(CaCl2), H+Al, Al, SB, V, CEC, P, K, OM, Ca, Mg, SiO2, Al2O3, and Fe2O3; along with particle size variables: clay, silt, and sand. Descriptive statistical and geostatistical analyses were carried out. The coefficient of variation (CV) was high for most of the variables, with the exception of pH with a low CV, and of sand with a medium CV. The models fitted to the experimental semivariograms of these variables were the exponential and the spherical. The range values were from 999 m to 3,690 m. For the variables pH(CaCl2), SB, and clay, there are three specific areas for land use planning. The central part of the area (zone III), where thePlintossolos Pétricos and Neossolos Flúvicos occur, is the most suitable for crops due to higher macronutrient content, organic matter and pH. Zones I and II are indicated for environmental preservation.