869 resultados para Value-at-Risk
Resumo:
La estimación y gestión del riesgo con la evolución del mercado ha tomado gran relevancia, principalmente en el sector financiero y de capitales, no obstante las variables macroeconómicas que afectan el riesgo en el tiempo son cada vez más volátiles y generan un mayor nivel de incertidumbre; se puede presentar en igual medida o con un mayor impacto en empresas del sector real, principalmente en aquellas cuyas condiciones de valoración causan un mayor impacto para los inversionistas, tal es el caso de las Asociaciones Público Privadas, mecanismos de contratación que vinculan al sector privado con el público en el desarrollo de proyectos de mayor nivel, donde se requiere establecer la valoración y cuantificación del riesgo que cada una de las partes está dispuesto a asumir -- Hoy por hoy existen métodos de medición sofisticados que permiten la estimación del Value at Risk (VaR), los cuales han sido desarrollados principalmente por el sistema financiero, sin contar con una aplicación en el sector real -- Es por eso que surge la necesidad de esta investigación para obtener una metodología que permita estimar el VaR bajo los conceptos teóricos de economía, estadística y simulación
Resumo:
The high morbidity and mortality associated with atherosclerotic coronary vascular disease (CVD) and its complications are being lessened by the increased knowledge of risk factors, effective preventative measures and proven therapeutic interventions. However, significant CVD morbidity remains and sudden cardiac death continues to be a presenting feature for some subsequently diagnosed with CVD. Coronary vascular disease is also the leading cause of anaesthesia related complications. Stress electrocardiography/exercise testing is predictive of 10 year risk of CVD events and the cardiovascular variables used to score this test are monitored peri-operatively. Similar physiological time-series datasets are being subjected to data mining methods for the prediction of medical diagnoses and outcomes. This study aims to find predictors of CVD using anaesthesia time-series data and patient risk factor data. Several pre-processing and predictive data mining methods are applied to this data. Physiological time-series data related to anaesthetic procedures are subjected to pre-processing methods for removal of outliers, calculation of moving averages as well as data summarisation and data abstraction methods. Feature selection methods of both wrapper and filter types are applied to derived physiological time-series variable sets alone and to the same variables combined with risk factor variables. The ability of these methods to identify subsets of highly correlated but non-redundant variables is assessed. The major dataset is derived from the entire anaesthesia population and subsets of this population are considered to be at increased anaesthesia risk based on their need for more intensive monitoring (invasive haemodynamic monitoring and additional ECG leads). Because of the unbalanced class distribution in the data, majority class under-sampling and Kappa statistic together with misclassification rate and area under the ROC curve (AUC) are used for evaluation of models generated using different prediction algorithms. The performance based on models derived from feature reduced datasets reveal the filter method, Cfs subset evaluation, to be most consistently effective although Consistency derived subsets tended to slightly increased accuracy but markedly increased complexity. The use of misclassification rate (MR) for model performance evaluation is influenced by class distribution. This could be eliminated by consideration of the AUC or Kappa statistic as well by evaluation of subsets with under-sampled majority class. The noise and outlier removal pre-processing methods produced models with MR ranging from 10.69 to 12.62 with the lowest value being for data from which both outliers and noise were removed (MR 10.69). For the raw time-series dataset, MR is 12.34. Feature selection results in reduction in MR to 9.8 to 10.16 with time segmented summary data (dataset F) MR being 9.8 and raw time-series summary data (dataset A) being 9.92. However, for all time-series only based datasets, the complexity is high. For most pre-processing methods, Cfs could identify a subset of correlated and non-redundant variables from the time-series alone datasets but models derived from these subsets are of one leaf only. MR values are consistent with class distribution in the subset folds evaluated in the n-cross validation method. For models based on Cfs selected time-series derived and risk factor (RF) variables, the MR ranges from 8.83 to 10.36 with dataset RF_A (raw time-series data and RF) being 8.85 and dataset RF_F (time segmented time-series variables and RF) being 9.09. The models based on counts of outliers and counts of data points outside normal range (Dataset RF_E) and derived variables based on time series transformed using Symbolic Aggregate Approximation (SAX) with associated time-series pattern cluster membership (Dataset RF_ G) perform the least well with MR of 10.25 and 10.36 respectively. For coronary vascular disease prediction, nearest neighbour (NNge) and the support vector machine based method, SMO, have the highest MR of 10.1 and 10.28 while logistic regression (LR) and the decision tree (DT) method, J48, have MR of 8.85 and 9.0 respectively. DT rules are most comprehensible and clinically relevant. The predictive accuracy increase achieved by addition of risk factor variables to time-series variable based models is significant. The addition of time-series derived variables to models based on risk factor variables alone is associated with a trend to improved performance. Data mining of feature reduced, anaesthesia time-series variables together with risk factor variables can produce compact and moderately accurate models able to predict coronary vascular disease. Decision tree analysis of time-series data combined with risk factor variables yields rules which are more accurate than models based on time-series data alone. The limited additional value provided by electrocardiographic variables when compared to use of risk factors alone is similar to recent suggestions that exercise electrocardiography (exECG) under standardised conditions has limited additional diagnostic value over risk factor analysis and symptom pattern. The effect of the pre-processing used in this study had limited effect when time-series variables and risk factor variables are used as model input. In the absence of risk factor input, the use of time-series variables after outlier removal and time series variables based on physiological variable values’ being outside the accepted normal range is associated with some improvement in model performance.
Resumo:
Recent literature has focused on realized volatility models to predict financial risk. This paper studies the benefit of explicitly modeling jumps in this class of models for value at risk (VaR) prediction. Several popular realized volatility models are compared in terms of their VaR forecasting performances through a Monte Carlo study and an analysis based on empirical data of eight Chinese stocks. The results suggest that careful modeling of jumps in realized volatility models can largely improve VaR prediction, especially for emerging markets where jumps play a stronger role than those in developed markets.
Resumo:
Background Genome-wide association studies have identified multiple genetic variants associated with prostate cancer risk which explain a substantial proportion of familial relative risk. These variants can be used to stratify individuals by their risk of prostate cancer. Methods We genotyped 25 prostate cancer susceptibility loci in 40,414 individuals and derived a polygenic risk score (PRS).We estimated empirical odds ratios (OR) for prostate cancer associated with different risk strata defined by PRS and derived agespecific absolute risks of developing prostate cancer by PRS stratum and family history. Results The prostate cancer risk for men in the top 1% of the PRS distribution was 30.6 (95% CI, 16.4-57.3) fold compared with men in the bottom 1%, and 4.2 (95% CI, 3.2-5.5) fold compared with the median risk. The absolute risk of prostate cancer by age of 85 years was 65.8% for a man with family history in the top 1% of the PRS distribution, compared with 3.7% for a man in the bottom 1%. The PRS was only weakly correlated with serum PSA level (correlation = 0.09). Conclusions Risk profiling can identify men at substantially increased or reduced risk of prostate cancer. The effect size, measured by OR per unit PRS, was higher in men at younger ages and in men with family history of prostate cancer. Incorporating additional newly identified loci into a PRS should improve the predictive value of risk profiles. Impact:We demonstrate that the risk profiling based on SNPs can identify men at substantially increased or reduced risk that could have useful implications for targeted prevention and screening programs.
Resumo:
Modeling and forecasting of implied volatility (IV) is important to both practitioners and academics, especially in trading, pricing, hedging, and risk management activities, all of which require an accurate volatility. However, it has become challenging since the 1987 stock market crash, as implied volatilities (IVs) recovered from stock index options present two patterns: volatility smirk(skew) and volatility term-structure, if the two are examined at the same time, presents a rich implied volatility surface (IVS). This implies that the assumptions behind the Black-Scholes (1973) model do not hold empirically, as asset prices are mostly influenced by many underlying risk factors. This thesis, consists of four essays, is modeling and forecasting implied volatility in the presence of options markets’ empirical regularities. The first essay is modeling the dynamics IVS, it extends the Dumas, Fleming and Whaley (DFW) (1998) framework; for instance, using moneyness in the implied forward price and OTM put-call options on the FTSE100 index, a nonlinear optimization is used to estimate different models and thereby produce rich, smooth IVSs. Here, the constant-volatility model fails to explain the variations in the rich IVS. Next, it is found that three factors can explain about 69-88% of the variance in the IVS. Of this, on average, 56% is explained by the level factor, 15% by the term-structure factor, and the additional 7% by the jump-fear factor. The second essay proposes a quantile regression model for modeling contemporaneous asymmetric return-volatility relationship, which is the generalization of Hibbert et al. (2008) model. The results show strong negative asymmetric return-volatility relationship at various quantiles of IV distributions, it is monotonically increasing when moving from the median quantile to the uppermost quantile (i.e., 95%); therefore, OLS underestimates this relationship at upper quantiles. Additionally, the asymmetric relationship is more pronounced with the smirk (skew) adjusted volatility index measure in comparison to the old volatility index measure. Nonetheless, the volatility indices are ranked in terms of asymmetric volatility as follows: VIX, VSTOXX, VDAX, and VXN. The third essay examines the information content of the new-VDAX volatility index to forecast daily Value-at-Risk (VaR) estimates and compares its VaR forecasts with the forecasts of the Filtered Historical Simulation and RiskMetrics. All daily VaR models are then backtested from 1992-2009 using unconditional, independence, conditional coverage, and quadratic-score tests. It is found that the VDAX subsumes almost all information required for the volatility of daily VaR forecasts for a portfolio of the DAX30 index; implied-VaR models outperform all other VaR models. The fourth essay models the risk factors driving the swaption IVs. It is found that three factors can explain 94-97% of the variation in each of the EUR, USD, and GBP swaption IVs. There are significant linkages across factors, and bi-directional causality is at work between the factors implied by EUR and USD swaption IVs. Furthermore, the factors implied by EUR and USD IVs respond to each others’ shocks; however, surprisingly, GBP does not affect them. Second, the string market model calibration results show it can efficiently reproduce (or forecast) the volatility surface for each of the swaptions markets.
Resumo:
Coal-fired power plants may enjoy a significant advantage relative to gas plants in terms of cheaper fuel cost. Still, this advantage may erode or even turn into disadvantage depending on CO2 emission allowance price. This price will presumably rise in both the Kyoto Protocol commitment period (2008-2012) and the first post-Kyoto years. Thus, in a carbon-constrained environment, coal plants face financial risks arising in their profit margins, which in turn hinge on their so-called "clean dark spread". These risks are further reinforced when the price of the output electricity is determined by natural gas-fired plants' marginal costs, which differ from coal plants' costs. We aim to assess the risks in coal plants' margins. We adopt parameter values estimated from empirical data. These in turn are derived from natural gas and electricity markets alongside the EU ETS market where emission allowances are traded. Monte Carlo simulation allows to compute the expected value and risk profile of coal-based electricity generation. We focus on the clean dark spread in both time periods under different future scenarios in the allowance market. Specifically, bottom 5% and 10% percentiles are derived. According to our results, certain future paths of the allowance price may impose significant risks on the clean dark spread obtained by coal plants.
Resumo:
Background Previous research has shown that home ownership is associated with a reduced risk of admission to institutional care. The extent to which this reflects associations between wealth and health, between wealth and ability to buy in care or increased motivation to avoid admission related to policies on charging is unclear. Taking account of the value of the home, as well as housing tenure, may provide some clarification as to the relative importance of these factors.
Aims To analyse the probability of admission to residential and nursing home care according to housing tenure and house value.
Methods Cox regression was used to examine the association between home ownership, house value and risk of care home admissions over 6 years of follow-up among a cohort of 51 619 people aged 65 years or older drawn from the Northern Ireland Longitudinal Study, a representative sample of approximate to 28% of the population of Northern Ireland.
Results 4% of the cohort (2138) was admitted during follow-up. Homeowners were less likely than those who rented to be admitted to care homes (HR 0.77, 95% CI 0.70 to 0.85, after adjusting for age, sex, health, living arrangement and urban/rural differences). There was a strong association between house value/tenure and health with those in the highest valued houses having the lowest odds of less than good health or limiting long-term illness. However, there was no difference in probability of admission according to house value; HRs of 0.78 (95% CI 0.67 to 0.90) and 0.81 (95% CI 0.70 to 0.95), respectively, for the lowest and highest value houses compared with renters.
Conclusions The requirement for people in the UK with capital resources to contribute to their care is a significant disincentive to institutional admission. This may place an additional burden on carers.
Resumo:
In this paper, a stochastic programming approach is proposed for trading wind energy in a market environment under uncertainty. Uncertainty in the energy market prices is the main cause of high volatility of profits achieved by power producers. The volatile and intermittent nature of wind energy represents another source of uncertainty. Hence, each uncertain parameter is modeled by scenarios, where each scenario represents a plausible realization of the uncertain parameters with an associated occurrence probability. Also, an appropriate risk measurement is considered. The proposed approach is applied on a realistic case study, based on a wind farm in Portugal. Finally, conclusions are duly drawn. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper studies a risk measure inherited from ruin theory and investigates some of its properties. Specifically, we consider a value-at-risk (VaR)-type risk measure defined as the smallest initial capital needed to ensure that the ultimate ruin probability is less than a given level. This VaR-type risk measure turns out to be equivalent to the VaR of the maximal deficit of the ruin process in infinite time. A related Tail-VaR-type risk measure is also discussed.
Resumo:
Dans cette thèse, nous étudions quelques problèmes fondamentaux en mathématiques financières et actuarielles, ainsi que leurs applications. Cette thèse est constituée de trois contributions portant principalement sur la théorie de la mesure de risques, le problème de l’allocation du capital et la théorie des fluctuations. Dans le chapitre 2, nous construisons de nouvelles mesures de risque cohérentes et étudions l’allocation de capital dans le cadre de la théorie des risques collectifs. Pour ce faire, nous introduisons la famille des "mesures de risque entropique cumulatifs" (Cumulative Entropic Risk Measures). Le chapitre 3 étudie le problème du portefeuille optimal pour le Entropic Value at Risk dans le cas où les rendements sont modélisés par un processus de diffusion à sauts (Jump-Diffusion). Dans le chapitre 4, nous généralisons la notion de "statistiques naturelles de risque" (natural risk statistics) au cadre multivarié. Cette extension non-triviale produit des mesures de risque multivariées construites à partir des données financiéres et de données d’assurance. Le chapitre 5 introduit les concepts de "drawdown" et de la "vitesse d’épuisement" (speed of depletion) dans la théorie de la ruine. Nous étudions ces concepts pour des modeles de risque décrits par une famille de processus de Lévy spectrallement négatifs.
Resumo:
Internal risk management models of the kind popularized by J. P. Morgan are now used widely by the world’s most sophisticated financial institutions as a means of measuring risk. Using the returns on three of the most popular futures contracts on the London International Financial Futures Exchange, in this paper we investigate the possibility of using multivariate generalized autoregressive conditional heteroscedasticity (GARCH) models for the calculation of minimum capital risk requirements (MCRRs). We propose a method for the estimation of the value at risk of a portfolio based on a multivariate GARCH model. We find that the consideration of the correlation between the contracts can lead to more accurate, and therefore more appropriate, MCRRs compared with the values obtained from a univariate approach to the problem.
Resumo:
This paper proposes a new novel to calculate tail risks incorporating risk-neutral information without dependence on options data. Proceeding via a non parametric approach we derive a stochastic discount factor that correctly price a chosen panel of stocks returns. With the assumption that states probabilities are homogeneous we back out the risk neutral distribution and calculate five primitive tail risk measures, all extracted from this risk neutral probability. The final measure is than set as the first principal component of the preliminary measures. Using six Fama-French size and book to market portfolios to calculate our tail risk, we find that it has significant predictive power when forecasting market returns one month ahead, aggregate U.S. consumption and GDP one quarter ahead and also macroeconomic activity indexes. Conditional Fama-Macbeth two-pass cross-sectional regressions reveal that our factor present a positive risk premium when controlling for traditional factors.
Resumo:
Esse é um dos primeiros trabalhos a endereçar o problema de avaliar o efeito do default para fins de alocação de capital no trading book em ações listadas. E, mais especificamente, para o mercado brasileiro. Esse problema surgiu em crises mais recentes e que acabaram fazendo com que os reguladores impusessem uma alocação de capital adicional para essas operações. Por essa razão o comitê de Basiléia introduziu uma nova métrica de risco, conhecida como Incremental Risk Charge. Essa medida de risco é basicamente um VaR de um ano com um intervalo de confiança de 99.9%. O IRC visa medir o efeito do default e das migrações de rating, para instrumentos do trading book. Nessa dissertação, o IRC está focado em ações e como consequência, não leva em consideração o efeito da mudança de rating. Além disso, o modelo utilizado para avaliar o risco de crédito para os emissores de ação foi o Moody’s KMV, que é baseado no modelo de Merton. O modelo foi utilizado para calcular a PD dos casos usados como exemplo nessa dissertação. Após calcular a PD, simulei os retornos por Monte Carlo após utilizar um PCA. Essa abordagem permitiu obter os retornos correlacionados para fazer a simulação de perdas do portfolio. Nesse caso, como estamos lidando com ações, o LGD foi mantido constante e o valor utilizado foi baseado nas especificações de basiléia. Os resultados obtidos para o IRC adaptado foram comparados com um VaR de 252 dias e com um intervalo de confiança de 99.9%. Isso permitiu concluir que o IRC é uma métrica de risco relevante e da mesma escala de uma VaR de 252 dias. Adicionalmente, o IRC adaptado foi capaz de antecipar os eventos de default. Todos os resultados foram baseados em portfolios compostos por ações do índice Bovespa.
Resumo:
In the present thesis I study the contribution to firm value of inventories management from a risk management perspective. I find a significant contribution of inventories to the value of risk management especially through the operating flexibility channel. In contrast, I do not find evidence supporting the view of inventories a reserve of liquidity. Inventories substitute, albeit not perfectly, derivatives or cash holdings. The substitution between hedging with derivatives and inventory is moderated by the correlation between cash flow and the underlying asset in the derivative contract. Hedge ratios increase with the effectiveness of derivatives. The decision to hedge with cash holdings or inventories is strongly influenced by the degree of complementarity between production factors and by cash flow volatility. In addition, I provide a risk management based explanation of the secular substitution between inventories and cash holdings documented, among others, in Bates et al. (2009), Journal of Finance. In a sample of U.S. firms between 1980 and 2006, I empirically confirm the negative relation between inventories and cash and provide evidence on the poor performance of investment cash flow sensitivities as a measure of financial constraints also in the case of inventories investment. This result can be explained by firms' scarce reliance on inventories as a reserve of liquidity. Finally, as an extension of my study, I contrast with empirical data the theoretical predictions of a model on the integrated management of inventories, trade credit and cash holdings.