995 resultados para Vaganov-Shashkin forward modeling
Resumo:
Over the past several decades, it has become apparent that anthropogenic activities have resulted in the large-scale enhancement of the levels of many trace gases throughout the troposphere. More recently, attention has been given to the transport pathway taken by these emissions as they are dispersed throughout the atmosphere. The transport pathway determines the physical characteristics of emissions plumes and therefore plays an important role in the chemical transformations that can occur downwind of source regions. For example, the production of ozone (O3) is strongly dependent upon the transport its precursors undergo. O3 can initially be formed within air masses while still over polluted source regions. These polluted air masses can experience continued O3 production or O3 destruction downwind, depending on the air mass's chemical and transport characteristics. At present, however, there are a number of uncertainties in the relationships between transport and O3 production in the North Atlantic lower free troposphere. The first phase of the study presented here used measurements made at the Pico Mountain observatory and model simulations to determine transport pathways for US emissions to the observatory. The Pico Mountain observatory was established in the summer of 2001 in order to address the need to understand the relationships between transport and O3 production. Measurements from the observatory were analyzed in conjunction with model simulations from the Lagrangian particle dispersion model (LPDM), FLEX-PART, in order to determine the transport pathway for events observed at the Pico Mountain observatory during July 2003. A total of 16 events were observed, 4 of which were analyzed in detail. The transport time for these 16 events varied from 4.5 to 7 days, while the transport altitudes over the ocean ranged from 2-8 km, but were typically less than 3 km. In three of the case studies, eastward advection and transport in a weak warm conveyor belt (WCB) airflow was responsible for the export of North American emissions into the FT, while transport in the FT was governed by easterly winds driven by the Azores/Bermuda High (ABH) and transient northerly lows. In the fourth case study, North American emissions were lofted to 6-8 km in a WCB before being entrained in the same cyclone's dry airstream and transported down to the observatory. The results of this study show that the lower marine FT may provide an important transport environment where O3 production may continue, in contrast to transport in the marine boundary layer, where O3 destruction is believed to dominate. The second phase of the study presented here focused on improving the analysis methods that are available with LPDMs. While LPDMs are popular and useful for the analysis of atmospheric trace gas measurements, identifying the transport pathway of emissions from their source to a receptor (the Pico Mountain observatory in our case) using the standard gridded model output, particularly during complex meteorological scenarios can be difficult can be difficult or impossible. The transport study in phase 1 was limited to only 1 month out of more than 3 years of available data and included only 4 case studies out of the 16 events specifically due to this confounding factor. The second phase of this study addressed this difficulty by presenting a method to clearly and easily identify the pathway taken by only those emissions that arrive at a receptor at a particular time, by combining the standard gridded output from forward (i.e., concentrations) and backward (i.e., residence time) LPDM simulations, greatly simplifying similar analyses. The ability of the method to successfully determine the source-to-receptor pathway, restoring this Lagrangian information that is lost when the data are gridded, is proven by comparing the pathway determined from this method with the particle trajectories from both the forward and backward models. A sample analysis is also presented, demonstrating that this method is more accurate and easier to use than existing methods using standard LPDM products. Finally, we discuss potential future work that would be possible by combining the backward LPDM simulation with gridded data from other sources (e.g., chemical transport models) to obtain a Lagrangian sampling of the air that will eventually arrive at a receptor.
Resumo:
Simultaneous recordings from the soma and apical dendrite of layer V neocortical pyramidal cells of young rats show that, for any location of current input, an evoked action potential (AP) always starts at the axon and then propagates actively, but decrementally, backward into the dendrites. This back-propagating AP is supported by a low density (-gNa = approximately 4 mS/cm2) of rapidly inactivating voltage-dependent Na+ channels in the soma and the apical dendrite. Investigation of detailed, biophysically constrained, models of reconstructed pyramidal cells shows the following. (i) The initiation of the AP first in the axon cannot be explained solely by morphological considerations; the axon must be more excitable than the soma and dendrites. (ii) The minimal Na+ channel density in the axon that fully accounts for the experimental results is about 20-times that of the soma. If -gNa in the axon hillock and initial segment is the same as in the soma [as recently suggested by Colbert and Johnston [Colbert, C. M. & Johnston, D. (1995) Soc. Neurosci. Abstr. 21, 684.2]], then -gNa in the more distal axonal regions is required to be about 40-times that of the soma. (iii) A backward propagating AP in weakly excitable dendrites can be modulated in a graded manner by background synaptic activity. The functional role of weakly excitable dendrites and a more excitable axon for forward synaptic integration and for backward, global, communication between the axon and the dendrites is discussed.
Resumo:
Multibody System Dynamics has been responsible for revolutionizing Mechanical Engineering Design by using mathematical models to simulate and optimize the dynamic behavior of a wide range of mechanical systems. These mathematical models not only can provide valuable informations about a system that could otherwise be obtained only by experiments with prototypes, but also have been responsible for the development of many model-based control systems. This work represents a contribution for dynamic modeling of multibody mechanical systems by developing a novel recursive modular methodology that unifies the main contributions of several Classical Mechanics formalisms. The reason for proposing such a methodology is to motivate the implementation of computational routines for modeling complex multibody mechanical systems without being dependent on closed source software and, consequently, to contribute for the teaching of Multibody System Dynamics in undergraduate and graduate levels. All the theoretical developments are based on and motivated by a critical literature review, leading to a general matrix form of the dynamic equations of motion of a multibody mechanical system (that can be expressed in terms of any set of variables adopted for the description of motions performed by the system, even if such a set includes redundant variables) and to a general recursive methodology for obtaining mathematical models of complex systems given a set of equations describing the dynamics of each of its uncoupled subsystems and another set describing the constraints among these subsystems in the assembled system. This work also includes some discussions on the description of motion (using any possible set of motion variables and admitting any kind of constraint that can be expressed by an invariant), and on the conditions for solving forward and inverse dynamics problems given a mathematical model of a multibody system. Finally, some examples of computational packages based on the novel methodology, along with some case studies, are presented, highlighting the contributions that can be achieved by using the proposed methodology.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Nonlinear, non-stationary signals are commonly found in a variety of disciplines such as biology, medicine, geology and financial modeling. The complexity (e.g. nonlinearity and non-stationarity) of such signals and their low signal to noise ratios often make it a challenging task to use them in critical applications. In this paper we propose a new neural network based technique to address those problems. We show that a feed forward, multi-layered neural network can conveniently capture the states of a nonlinear system in its connection weight-space, after a process of supervised training. The performance of the proposed method is investigated via computer simulations.
Resumo:
This paper presents a general methodology for estimating and incorporating uncertainty in the controller and forward models for noisy nonlinear control problems. Conditional distribution modeling in a neural network context is used to estimate uncertainty around the prediction of neural network outputs. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localize the possible control solutions to consider. A nonlinear multivariable system with different delays between the input-output pairs is used to demonstrate the successful application of the developed control algorithm. The proposed method is suitable for redundant control systems and allows us to model strongly non Gaussian distributions of control signal as well as processes with hysteresis.
Resumo:
Neuroimaging studies have consistently shown that working memory (WM) tasks engage a distributed neural network that primarily includes the dorsolateral prefrontal cortex, the parietal cortex, and the anterior cingulate cortex. The current challenge is to provide a mechanistic account of the changes observed in regional activity. To achieve this, we characterized neuroplastic responses in effective connectivity between these regions at increasing WM loads using dynamic causal modeling of functional magnetic resonance imaging data obtained from healthy individuals during a verbal n-back task. Our data demonstrate that increasing memory load was associated with (a) right-hemisphere dominance, (b) increasing forward (i.e., posterior to anterior) effective connectivity within the WM network, and (c) reduction in individual variability in WM network architecture resulting in the right-hemisphere forward model reaching an exceedance probability of 99% in the most demanding condition. Our results provide direct empirical support that task difficulty, in our case WM load, is a significant moderator of short-term plasticity, complementing existing theories of task-related reduction in variability in neural networks. Hum Brain Mapp, 2013. © 2013 Wiley Periodicals, Inc.
Resumo:
The inverse controller is traditionally assumed to be a deterministic function. This paper presents a pedagogical methodology for estimating the stochastic model of the inverse controller. The proposed method is based on Bayes' theorem. Using Bayes' rule to obtain the stochastic model of the inverse controller allows the use of knowledge of uncertainty from both the inverse and the forward model in estimating the optimal control signal. The paper presents the methodology for general nonlinear systems and is demonstrated on nonlinear single-input-single-output (SISO) and multiple-input-multiple-output (MIMO) examples. © 2006 IEEE.
Resumo:
The inverse controller is traditionally assumed to be a deterministic function. This paper presents a pedagogical methodology for estimating the stochastic model of the inverse controller. The proposed method is based on Bayes' theorem. Using Bayes' rule to obtain the stochastic model of the inverse controller allows the use of knowledge of uncertainty from both the inverse and the forward model in estimating the optimal control signal. The paper presents the methodology for general nonlinear systems. For illustration purposes, the proposed methodology is applied to linear Gaussian systems. © 2004 IEEE.
Resumo:
The object of this paper is presenting the University of Economics – Varna, using a 3D model with 3Ds MAX. Created in 1920, May 14, University of Economics - Varna is a cultural institution with a place and style of its own. With the emergence of the three-dimensional modeling we entered a new stage of the evolution of computer graphics. The main target is to preserve the historical vision, to demonstrate forward-thinking and using of future-oriented approaches.
Resumo:
This research explores Bayesian updating as a tool for estimating parameters probabilistically by dynamic analysis of data sequences. Two distinct Bayesian updating methodologies are assessed. The first approach focuses on Bayesian updating of failure rates for primary events in fault trees. A Poisson Exponentially Moving Average (PEWMA) model is implemnented to carry out Bayesian updating of failure rates for individual primary events in the fault tree. To provide a basis for testing of the PEWMA model, a fault tree is developed based on the Texas City Refinery incident which occurred in 2005. A qualitative fault tree analysis is then carried out to obtain a logical expression for the top event. A dynamic Fault Tree analysis is carried out by evaluating the top event probability at each Bayesian updating step by Monte Carlo sampling from posterior failure rate distributions. It is demonstrated that PEWMA modeling is advantageous over conventional conjugate Poisson-Gamma updating techniques when failure data is collected over long time spans. The second approach focuses on Bayesian updating of parameters in non-linear forward models. Specifically, the technique is applied to the hydrocarbon material balance equation. In order to test the accuracy of the implemented Bayesian updating models, a synthetic data set is developed using the Eclipse reservoir simulator. Both structured grid and MCMC sampling based solution techniques are implemented and are shown to model the synthetic data set with good accuracy. Furthermore, a graphical analysis shows that the implemented MCMC model displays good convergence properties. A case study demonstrates that Likelihood variance affects the rate at which the posterior assimilates information from the measured data sequence. Error in the measured data significantly affects the accuracy of the posterior parameter distributions. Increasing the likelihood variance mitigates random measurement errors, but casuses the overall variance of the posterior to increase. Bayesian updating is shown to be advantageous over deterministic regression techniques as it allows for incorporation of prior belief and full modeling uncertainty over the parameter ranges. As such, the Bayesian approach to estimation of parameters in the material balance equation shows utility for incorporation into reservoir engineering workflows.
Resumo:
Bulk gallium nitride (GaN) power semiconductor devices are gaining significant interest in recent years, creating the need for technology computer aided design (TCAD) simulation to accurately model and optimize these devices. This paper comprehensively reviews and compares different GaN physical models and model parameters in the literature, and discusses the appropriate selection of these models and parameters for TCAD simulation. 2-D drift-diffusion semi-classical simulation is carried out for 2.6 kV and 3.7 kV bulk GaN vertical PN diodes. The simulated forward current-voltage and reverse breakdown characteristics are in good agreement with the measurement data even over a wide temperature range.
Resumo:
Deficits in social communication and interaction have been identified as distinguishing impairments for individuals with an autism spectrum disorder (ASD). As a pivotal skill, the successful development of social communication and interaction in individuals with ASD is a lifelong objective. Point-of-view video modeling has the potential to address these deficits. This type of video involves filming the completion of a targeted skill or behavior from a first-person perspective. By presenting only what a person might see from his or her viewpoint, it has been identified to be more effective in limiting irrelevant stimuli by providing a clear frame of reference to facilitate imitation. The current study investigated the use of point-of-view video modeling in teaching social initiations (e.g., greetings). Using a multiple baseline across participants design, five kindergarten participants were taught social initiations using point-of-view video modeling and video priming. Immediately before and after viewing the entire point-of-view video model, the participants were evaluated on their social initiations with a trained, typically developing peer serving as a communication partner. Specifically, the social initiations involved participants’ abilities to shift their attention toward the peer who entered the classroom, maintain attention toward the peer, and engage in an appropriate social initiation (e.g., hi, hello). Both generalization and maintenance were tested. Overall, the data suggest point-of-view video modeling is an effective intervention for increasing social initiations in young students with ASD. However, retraining was necessary for acquisition of skills in the classroom environment. Generalization in novel environments and with a novel communication partner, and generalization to other social initiation skills was limited. Additionally, maintenance of gained social initiation skills only occurred in the intervention room. Despite the limitations of the study and variable results, there are a number of implications moving forward for both practitioners and future researchers examining point-of-view modeling and its potential impact on the social initiation skills of individuals with ASD.
Resumo:
Scientific curiosity, exploration of georesources and environmental concerns are pushing the geoscientific research community toward subsurface investigations of ever-increasing complexity. This review explores various approaches to formulate and solve inverse problems in ways that effectively integrate geological concepts with geophysical and hydrogeological data. Modern geostatistical simulation algorithms can produce multiple subsurface realizations that are in agreement with conceptual geological models and statistical rock physics can be used to map these realizations into physical properties that are sensed by the geophysical or hydrogeological data. The inverse problem consists of finding one or an ensemble of such subsurface realizations that are in agreement with the data. The most general inversion frameworks are presently often computationally intractable when applied to large-scale problems and it is necessary to better understand the implications of simplifying (1) the conceptual geological model (e.g., using model compression); (2) the physical forward problem (e.g., using proxy models); and (3) the algorithm used to solve the inverse problem (e.g., Markov chain Monte Carlo or local optimization methods) to reach practical and robust solutions given today's computer resources and knowledge. We also highlight the need to not only use geophysical and hydrogeological data for parameter estimation purposes, but also to use them to falsify or corroborate alternative geological scenarios.
Resumo:
Doutoramento em Gestão