968 resultados para VISCOUS DISSIPATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we estimate the losses during teleportation processes requiring either two high-Q cavities or a single bimodal cavity. The estimates were carried out using the phenomenological operator approach introduced by de Almeida et al. [Phys. Rev. A 62, 033815 (2000)].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, employing the Ito stochastic Schrodinger equation, we extend Bell's beable interpretation of quantum mechanics to encompass dissipation, decoherence, and the quantum-to-classical transition through quantum trajectories. For a particular choice of the source of stochasticity, the one leading to a dissipative Lindblad-type correction to the Hamiltonian dynamics, we find that the diffusive terms in Nelsons stochastic trajectories are naturally incorporated into Bohm's causal dynamics, yielding a unified Bohm-Nelson theory. In particular, by analyzing the interference between quantum trajectories, we clearly identify the decoherence time, as estimated from the quantum formalism. We also observe the quantum-to-classical transition in the convergence of the infinite ensemble of quantum trajectories to their classical counterparts. Finally, we show that our extended beables circumvent the problems in Bohm's causal dynamics regarding stationary states in quantum mechanics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some properties of the annular billiard under the presence of weak dissipation are studied. We show, in a dissipative system, that the average energy of a particle acquires higher values than its average energy of the conservative case. The creation of attractors, associated with a chaotic dynamics in the conservative regime, both in appropriated regions of the phase space, constitute a generic mechanism to increase the average energy of dynamical systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the application of the lumped dissipation model in the analysis of reinforced concrete structures, emphasizing the nonlinear behaviour of the materials The presented model is based on the original models developed by Cipollina and Florez-Lopez (1995) [12]. Florez-Lopez (1995) [13] and Picon and Florez-Lopez (2000) [14] However, some modifications were introduced in the functions that control the damage evolution in order to improve the results obtained. The efficiency of the new approach is evaluated by means of a comparison with experimental results on reinforced concrete structures such as simply supported beams, plane frames and beam-to-column connections Finally, the adequacy of the numerical model representing the global behaviour of framed structures is investigated and the limits of the analysis are discussed (C) 2009 Elsevier Ltd All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, dispersed flow of viscous oil and water is investigated. The experimental work was performed in a 26.2-mm-i.d. 12-m-long horizontal glass pipe using water and oil (viscosity of 100 mPa s and density of 860 kg/m(3)) as test fluids. High-speed video recording and a new wire-mesh sensor based on capacitance (permittivity) measurements were used to characterize the flow. Furthermore, holdup data were obtained using quick-closing-valves technique (QCV). An interesting finding was the oil-water slip ratio greater than one for dispersed flow at high Reynolds number. Chordal phase fraction distribution diagrams and images of the holdup distribution over the pipe cross-section obtained via wire-mesh sensor indicated a significant amount of water near to the pipe wall for the three different dispersed flow patterns identified in this study: oil-in-water homogeneous dispersion (o/w H), oil-in-water non-homogeneous dispersion (o/w NH) and Dual continuous (Do/w & Dw/o). The phase slip might be explained by the existence of a water film surrounding the homogeneous mixture of oil-in-water in a hidrofilic-oilfobic pipe. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wear behavior of coatings has usually been described in terms of mechanical properties such as hardness (H) and effective elastic modulus (E*). Alternatively, an energy approach appears as a promising analysis taking into account the influence of those properties. In a nanoindentation test, the dissipated energy depends not only on the hardness and elastic modulus, but also on the elastic recovery (W(e)). This work aims to establish a relation between plastic deformation energy (E(p)) during depth-sensing indentation method and the grooving resistance of coatings in nanoscratch tests. An energy dissipation coefficient (K(d)) was defined, calculated as the ratio of the plastic to the total deformation energy (E(p)/E(t)), which represents the energy dissipation of materials. Reactive depositions using titanium as the target and nitrogen and methane as reactive gases were obtained by triode magnetron sputtering, in order to assess wear and nanoindentation data. A topographical, chemical and microstructural characterization has been conducted using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), wave dispersion spectroscopy (WDS), scanning electron (SEM) and atomic force microscopy (AFM) techniques. Nanoscratch results showed that the groove depth was well correlated to the energy dissipation coefficient of the coatings. On the other hand, a reduction in the coefficient was found when the elastic recovery was increased. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ethylene oxide (EO) is used to sterilize Oxygenator and Tubing applied to heart surgery. Residual levels of EO and its derivatives, ethylene chlorohydrin (ECH) and ethylene glycol (EG), may be hazardous to the patients. Therefore, it must be removed by the aeration process. This study aimed to estimate the minimum aeration time for these devices to attain safe limits for use (avoiding excessive aeration time) and to evaluate the Green Fluorescent Protein (GFP) as a biosensor capable of best indicating the distribution and penetration of EO gas throughout the sterilization chamber. Sterilization cycles of 2, 4, and 8 h were monitored by Bacillus atrophaeus ATCC 9372 as a biological indicator (131) and by the GFP. Residual levels of EO, ECH, and EG were determined by gas chromatography (GC), and the residual dissipation was studied. Safe limits were reached right after the sterilization process for Oxygenator and after 204 h of aeration for Tubing. In the 2 h cycle, the GFP concentration decreased from 4.8 (+/- 3.2)% to 7.5 (+/- 2.5)%. For the 4 h cycle, the GFP concentration decreased from 17.4 (+/- 3.0)% to 21.5 (+/- 6.8)%, and in the 8 h cycle, it decreased from 22.5 (+/- 3.2)% to 23.9 (+/- 3.9)%. This finding showed the potentiality for GFP applications as an EO biosensor. (C) 2009 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 9113: 626-630, 2009

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This experiment investigated whether the stability of rhythmic unimanual movements is primarily a function of perceptual/spatial orientation or neuro-mechanical in nature. Eight participants performed rhythmic flexion and extension movements of the left wrist for 30 s at a frequency of 2.25 Hz paced by an auditory metronome. Each participant performed 8 flex-on-the-beat trials and 8 extend-on-the-beat trials in one of two load conditions, loaded and unload. In the loaded condition, a servo-controlled torque motor was used to apply a small viscous load that resisted the flexion phase of the movement only. Both the amplitude and frequency of the movement generated in the loaded and unloaded conditions were statistically equivalent. However, in the loaded condition movements in which participants were required to flex-on-the-beat became less stable (more variable) while extend-on-the-beat movements remained unchanged compared with the unload condition. The small alteration in required muscle force was sufficient to result in reliable changes in movement stability even a situation where the movement kinematics were identical. These findings support the notion that muscular constraints, independent of spatial dependencies, can be sufficiently strong to reliably influence coordination in a simple unimanual task.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive analytical solutions for the three-dimensional time-dependent buckling of a non-Newtonian viscous plate in a less viscous medium. For the plate we assume a power-law rheology. The principal, axes of the stretching D-ij in the homogeneously deformed ground state are parallel and orthogonal to the bounding surfaces of the plate in the flat state. In the model formulation the action of the less viscous medium is replaced by equivalent reaction forces. The reaction forces are assumed to be parallel to the normal vector of the deformed plate surfaces. As a consequence, the buckling process is driven by the differences between the in-plane stresses and out of plane stress, and not by the in-plane stresses alone as assumed in previous models. The governing differential equation is essentially an orthotropic plate equation for rate dependent material, under biaxial pre-stress, supported by a viscous medium. The differential problem is solved by means of Fourier transformation and largest growth coefficients and corresponding wavenumbers are evaluated. We discuss in detail fold evolutions for isotropic in-plane stretching (D-11 = D-22), uniaxial plane straining (D-22 = 0) and in-plane flattening (D-11 = -2D(22)). Three-dimensional plots illustrate the stages of fold evolution for random initial perturbations or initial embryonic folds with axes non-parallel to the maximum compression axis. For all situations, one dominant set of folds develops normal to D-11, although the dominant wavelength differs from the Biot dominant wavelength except when the plate has a purely Newtonian viscosity. However, in the direction parallel to D-22, there exist infinitely many modes in the vicinity of the dominant wavelength which grow only marginally slower than the one corresponding to the dominant wavelength. This means that, except for very special initial conditions, the appearance of a three-dimensional fold will always be governed by at least two wavelengths. The wavelength in the direction parallel to D-11 is the dominant wavelength, and the wavelength(s) in the direction parallel to D-22 is determined essentially by the statistics of the initial state. A comparable sensitivity to the initial geometry does not exist in the classic two-dimensional folding models. In conformity with tradition we have applied Kirchhoff's hypothesis to constrain the cross-sectional rotations of the plate. We investigate the validity of this hypothesis within the framework of Reissner's plate theory. We also include a discussion of the effects of adding elasticity into the constitutive relations and show that there exist critical ratios of the relaxation times of the plate and the embedding medium for which two dominant wavelengths develop, one at ca. 2.5 of the classical Biot dominant wavelength and the other at ca. 0.45 of this wavelength. We propose that herein lies the origin of parasitic folds well known in natural examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The popular Newmark algorithm, used for implicit direct integration of structural dynamics, is extended by means of a nodal partition to permit use of different timesteps in different regions of a structural model. The algorithm developed has as a special case an explicit-explicit subcycling algorithm previously reported by Belytschko, Yen and Mullen. That algorithm has been shown, in the absence of damping or other energy dissipation, to exhibit instability over narrow timestep ranges that become narrower as the number of degrees of freedom increases, making them unlikely to be encountered in practice. The present algorithm avoids such instabilities in the case of a one to two timestep ratio (two subcycles), achieving unconditional stability in an exponential sense for a linear problem. However, with three or more subcycles, the trapezoidal rule exhibits stability that becomes conditional, falling towards that of the central difference method as the number of subcycles increases. Instabilities over narrow timestep ranges, that become narrower as the model size increases, also appear with three or more subcycles. However by moving the partition between timesteps one row of elements into the region suitable for integration with the larger timestep these the unstable timestep ranges become extremely narrow, even in simple systems with a few degrees of freedom. As well, accuracy is improved. Use of a version of the Newmark algorithm that dissipates high frequencies minimises or eliminates these narrow bands of instability. Viscous damping is also shown to remove these instabilities, at the expense of having more effect on the low frequency response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Control of chaotic instability in a rotating multibody system in the form of a dual-spin spacecraft with an axial nutational damper is achieved using an algorithm derived using energy methods. The control method is implemented on two realistic spacecraft parameter configurations which have been found to exhibit chaotic instability when a sinusoidally varying torque is applied to the spacecraft for a range of forcing amplitudes and frequencies. Such a torque, in practice, may arise under malfunction of the control system or from an unbalanced rotor. Chaotic instabilities arising from these torques could introduce uncertainties and irregularities into a spacecraft's attitude and consequently impair pointing accuracy. The control method is formulated from nutational stability results derived using an energy sink approximation for a dual-spin spacecraft with an asymmetric platform and axisymmetric rotor. The effectiveness of the control method is shown numerically and the results are studied by means of time history, phase space, Poincare map, Lyapunov characteristic exponents and Bifurcation diagrams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Control of chaotic instability in a simplified model of a spinning spacecraft with dissipation is achieved using an algorithm derived using Lyapunov's second method. The control method is implemented on a realistic spacecraft parameter configuration which has been found to exhibit chaotic instability for a range of forcing amplitudes and frequencies when a sinusoidally varying torque is applied to the spacecraft. Such a torque, may arise in practice from an unbalanced rotor or from vibrations in appendages. Numerical simulations are performed and the results are studied by means of time history, phase space, Poincare map, Lyapunov characteristic exponents and bifurcation diagrams. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: