901 resultados para VACUOLAR H -ATPASE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of Mycobacterium tuberculosis to resist intraphagosomal stresses, such as oxygen radicals and low pH, is critical for its persistence. Here, we show that a cytoplasmic redox sensor, WhiB3, and the major M. tuberculosis thiol, mycothiol (MSH), are required to resist acidic stress during infection. WhiB3 regulates the expression of genes involved in lipid anabolism, secretion, and redox metabolism, in response to acidic pH. Furthermore, inactivation of the MSH pathway subverted the expression of whiB3 along with other pH-specific genes in M. tuberculosis. Using a genetic biosensor of mycothiol redox potential (E-MSH), we demonstrated that a modest decrease in phagosomal pH is sufficient to generate redox heterogeneity in E-MSH of the M. tuberculosis population in a WhiB3-dependent manner. Data indicate that M. tuberculosis needs low pH as a signal to alter cytoplasmic E-MSH, which activates WhiB3-mediated gene expression and acid resistance. Importantly, WhiB3 regulates intraphagosomal pH by down-regulating the expression of innate immune genes and blocking phagosomal maturation. We show that this block in phagosomal maturation is in part due to WhiB3-dependent production of polyketide lipids. Consistent with these observations, Mtb Delta whiB3 displayed intramacrophage survival defect, which can be rescued by pharmacological inhibition of phagosomal acidification. Last, Mtb Delta whiB3 displayed marked attenuation in the lungs of guinea pigs. Altogether, our study revealed an intimate link between vacuolar acidification, redox physiology, and virulence in M. tuberculosis and discovered WhiB3 as crucial mediator of phagosomal maturation arrest and acid resistance in M. tuberculosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, construction of hybrid device by integrating nanowires with F1-ATPase motors is described. The nickel nanowires and multi-segment nanowires, including gold and nickel, were fabricated by electrochemical deposition in nanoporous templates. The nickel nanowires functionalized by biotinylated peptide can be assembled directly onto F1-ATPase motors to act as the propellers. If the multicomponent nanowires, including gold and nickel, were selectively functionalized by the thiol group modified ssDNA and the synthetic peptide, respectively, the biotinylated F1- ATPase motors can be attached to the biotinylated peptide on nickel segment of the nanowires. Then, the multi-component nanowires can also be used as the propellers, and one may observe the rotations of the multi-component nanowires driven by F1-ATPase motors. Therefore, introduction of multiple segments along the length of a nanowire can lead to a variety of multiple chemical functionalities, which can be selectively bound to cells and special biomolecules. This method provides an insight for the construction of other hybrid devices with its controlling arrangement of different biomolecule on designed nanometer scale structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient and accurate localization of membrane proteins is essential to all cells and requires a complex cascade of interactions between protein machineries. This is exemplified in the recently discovered Guided Entry of Tail-anchored protein pathway, in which the central targeting factor Get3 must sequentially interact with three distinct binding partners (Get4, Get1 and Get2) to ensure the targeted delivery of Tail-anchored proteins to the endoplasmic reticulum membrane. To understand the molecular and energetic principles that provide the vectorial driving force of these interactions, we used a quantitative fluorescence approach combined with mechanistic enzymology to monitor the effector interactions of Get3 at each stage of Tail-anchored protein targeting. We show that nucleotide and membrane protein substrate generate a gradient of interaction energies that drive the cyclic and ordered transit of Get3 from Get4 to Get2 and lastly to Get1. These data also define how the Get3/Tail-anchored complex is captured, handed over, and disassembled by the Get1/2 receptor at the membrane, and reveal a novel role for Get4/5 in recycling Get3 from the endoplasmic reticulum membrane at the end of the targeting reaction. These results provide general insights into how complex cascades of protein interactions are coordinated and coupled to energy inputs in biological systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

除虫菊酯越来越广泛地被应用于农业和家庭昆虫防治,主要通过作用于膜结合蛋白而对动物起神经毒性.迷迭香因其抗氧化功能而被应用于很多商业化的除虫菊酯产品中.本实验以大鼠大脑突触体ATP酶为研究对象,对除虫菊酯和迷迭香的药理学进行了研究.用Percoll梯度离心法分离突触体,通过检测无机磷的量来测定总ATP酶和Mg2+-ATP酶活性.结果表明,除虫菊酯在浓度为10 μmol/L时总ATP酶和Mg2+-ATP酶分别降低到对照的80.3%和46.9%.迷迭香在浓度为0.3~30 μmol/L时几乎不影响ATP酶活性,当浓度上升到3 000 μmol/L时,总ATP酶活性降低到66.8%,而Mg2+-ATP酶活性降低到54.5%. 10 μmol/L 除虫菊酯和30 μmol/L迷迭香混合物引起总ATP酶和Mg2+-ATP酶分别降低到72.9%和33.4%.结论: 1) 除虫菊酯能抑制大鼠大脑ATP酶活性; 2) 迷迭香只在高浓度下才对ATP酶有抑制作用; 3) 迷迭香能增强除虫菊酯对ATP酶的抑制作用.图3参19

Relevância:

20.00% 20.00%

Publicador:

Resumo:

不同季节捕获的草鱼在实验室(16±4℃)驯化3—7天,其鳃ATPase活力在显著性水平为0.05时,不同批鱼无显著差异。离体实验条件下,汞、三氯联苯、直链烷基苯磺酸钠对草鱼组织ATPase的半抑制浓度分别为1.8ppM(肾),1.84ppM(鳃),3.9ppM(鳃);Hg~(2+)对肾的作用大于对鳃的作用。草鱼组织ATPase可作为一项指标用于毒理学研究。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

随着世代的增加,水稻上三叶中叶绿素含量有降低趋势,倒三叶变化较明显。‘辽粳326’剑叶中ATPASE活性、ABA含量和净光合速率则随世代的增加而逐渐降低,但差异未达显著水平,群体光合速率降低较明显,N代与N+4代差异达显著水平。‘奥羽316’的剑叶中ATPASE活性、ABA含量和光合速率随世代增加变化不明显。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fasciolosis is a parasitic infection by the liver fluke Fasciola hepatica, which costs the global agricultural community over US $2 billion per year. Its prevalence is rising due to factors such as climate change and drug resistance. ATP-dependent membrane transporters are considered good potential drug targets as they are essential for cellular processes and are in an exposed, accessible position in the cell. Immunolocalisation studies demonstrated that a plasma membrane calcium ATPase (PMCA) was localised to the parenchymal tissue in F. hepatica. The coding sequence for a F. hepatica PMCA (FhPMCA) has been obtained. This sequence encodes a 1,163 amino acid protein which contains motifs which are commonly conserved in PMCAs. Molecular modelling predicted that the protein has 10 transmembrane segments which include a potential calcium ion binding site and phosphorylation motif. FhPMCA interacts with the calmodulin-like protein FhCaM1, but not the related proteins FhCaM2 or FhCaM3, in a calcium-ion dependent manner. This interaction occurs through a region in the C-terminal region of FhPMCA which most likely adopts an a-helical conformation. When FhPMCA was heterologously expressed in a budding yeast strain deleted for its PMCA (Pmc1p), it restored viability. Microsomes prepared from these yeast cells had calcium ion stimulated ATPase activity which was inhibited by the known PMCA inhibitors, bisphenol and eosin. The potential of FhPMCA as a new drug target is discussed.