943 resultados para VACCINE CANDIDATES


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Abstract Background Plasmodium vivax merozoite surface protein-1 (MSP-1) is an antigen considered to be one of the leading malaria vaccine candidates. PvMSP-1 is highly immunogenic and evidences suggest that it is target for protective immunity against asexual blood stages of malaria parasites. Thus, this study aims to evaluate the acquired cellular and antibody immune responses against PvMSP-1 in individuals naturally exposed to malaria infections in a malaria-endemic area in the north-eastern Amazon region of Brazil. Methods The study was carried out in Paragominas, Pará State, in the Brazilian Amazon. Blood samples were collected from 35 individuals with uncomplicated malaria. Peripheral blood mononuclear cells were isolated and the cellular proliferation and activation was analysed in presence of 19 kDa fragment of MSP-1 (PvMSP-119) and Plasmodium falciparum PSS1 crude antigen. Antibodies IgE, IgM, IgG and IgG subclass and the levels of TNF, IFN-γ and IL-10 were measured by enzyme-linked immunosorbent assay. Results The prevalence of activated CD4+ was greater than CD8+ T cells, in both ex-vivo and in 96 h culture in presence of PvMSP-119 and PSS1 antigen. A low proliferative response against PvMSP-119 and PSS1 crude antigen after 96 h culture was observed. High plasmatic levels of IFN-γ and IL-10 as well as lower TNF levels were also detected in malaria patients. However, in the 96 h supernatant culture, the dynamics of cytokine responses differed from those depicted on plasma assays; in presence of PvMSP-119 stimulus, higher levels of TNF were noted in supernatant 96 h culture of malaria patient’s cells while low levels of IFN-γ and IL-10 were verified. High frequency of malaria patients presenting antibodies against PvMSP-119 was evidenced, regardless class or IgG subclass.PvMSP-119-induced antibodies were predominantly on non-cytophilic subclasses. Conclusions The results presented here shows that PvMSP-119 was able to induce a high cellular activation, leading to production of TNF and emphasizes the high immunogenicity of PvMSP-119 in naturally exposed individuals and, therefore, its potential as a malaria vaccine candidate.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the last decade, the reverse vaccinology approach shifted the paradigm of vaccine discovery from conventional culture-based methods to high-throughput genome-based approaches for the development of recombinant protein-based vaccines against pathogenic bacteria. Besides reaching its main goal of identifying new vaccine candidates, this new procedure produced also a huge amount of molecular knowledge related to them. In the present work, we explored this knowledge in a species-independent way and we performed a systematic in silico molecular analysis of more than 100 protective antigens, looking at their sequence similarity, domain composition and protein architecture in order to identify possible common molecular features. This meta-analysis revealed that, beside a low sequence similarity, most of the known bacterial protective antigens shared structural/functional Pfam domains as well as specific protein architectures. Based on this, we formulated the hypothesis that the occurrence of these molecular signatures can be predictive of possible protective properties of other proteins in different bacterial species. We tested this hypothesis in Streptococcus agalactiae and identified four new protective antigens. Moreover, in order to provide a second proof of the concept for our approach, we used Staphyloccus aureus as a second pathogen and identified five new protective antigens. This new knowledge-driven selection process, named MetaVaccinology, represents the first in silico vaccine discovery tool based on conserved and predictive molecular and structural features of bacterial protective antigens and not dependent upon the prediction of their sub-cellular localization.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bluetongue virus (BTV) is an economically important member of the genus Orbivirus and closely related to African horse sickness virus (AHSV) and Epizootic hemorrhagic disease virus (EHDV). Currently, 26 different serotypes of BTV are known. The virus is transmitted by blood-feeding Culicoides midges and causes disease (bluetongue [BT]) in ruminants. In 2006/2007, BTV serotype 8 (BTV-8) caused widespread outbreaks of BT amongst livestock in Europe, which were eventually controlled employing a conventionally inactivated BTV vaccine. However, this vaccine did not allow the discrimination of infected from vaccinated animals (DIVA) by the commonly used VP7 cELISA. RNA replicon vectors based on propagation-incompetent recombinant vesicular stomatitis virus (VSV) represent a novel vaccine platform that combines the efficacy of live attenuated vaccines with the safety of inactivated vaccines. Our goal was to generate an RNA replicon vaccine for BTV-8, which is safe, efficacious, adaptable to emerging orbivirus infections , and compliant with the DIVA principle. The VP2, VP5, VP3 and VP7 genes encoding the BTV-8 capsid proteins, as well as the non-structural proteins NS1 and NS3 were inserted into a VSV vector genome lacking the essential VSV glycoprotein (G) gene. Infectious virus replicon particles (VRP) were produced on a transgenic helper cell line providing the VSV G protein in trans. Expression of antigens in vitro was analysed by immunofluorescence using monoclonal and polyclonal antibodies. In a pilot study, sheep were immunized with two different VRP-based vaccine candidates, one comprising the BTV-8 antigens VP2, VP5, VP3, VP7, NS1, and NS3, the other one containing antigens VP3, VP7, NS1, and NS3. Control animals received VRPs containing an irrelevant antigen. Virus neutralizing antibodies and protection after BTV-8 challenge were evaluated and compared to animals immunized with the conventionally inactivated vaccine. Full protection was induced only when the two antigens VP2 and VP5 were included in the vaccine. To further evaluate if VP2 alone, a combination of VP2 and VP5 or VP5 alone were necessary for complete protection, we performed a second animal trial. Interestingly, VP2 as well as the combination of VP2 and VP5 but not VP5 alone conferred full protection in terms of neutralizing antibodies, and protection from clinical signs and viremia after BTV-8 challenge. These results show that the VSV replicon system represents a safe, efficacious and DIVA-compliant vaccine against BTV as well as a possible platform for protection against other Orbiviruses, such as AHSV and EHDV.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Currently there are no effective vaccines for the control of bovine neosporosis. During the last years several subunit vaccines based on immunodominant antigens and other proteins involved in adhesion, invasion and intracellular proliferation of Neospora caninum have been evaluated as targets for vaccine development in experimental mouse infection models. Among them, the rhoptry antigen NcROP2 and the immunodominant NcGRA7 protein have been assessed with varying results. Recent studies have shown that another rhoptry component, NcROP40, and NcNTPase, a putative dense granule antigen, exhibit higher expression levels in tachyzoites of virulent N. caninum isolates, suggesting that these could be potential vaccine candidates to limit the effects of infection. In the present work, the safety and efficacy of these recombinant antigens formulated in Quil-A adjuvant as monovalent vaccines or pair-wise combinations (rNcROP40+rNcROP2 and rNcGRA7+rNcNTPase) were evaluated in a pregnant mouse model of neosporosis. All the vaccine formulations elicited a specific immune response against their respective native proteins after immunization. Mice vaccinated with rNcROP40 and rNcROP2 alone or in combination produced the highest levels of IFN-γ and exhibited low parasite burdens and low IgG antibody levels after the challenge. In addition, most of the vaccine formulations were able to increase the median survival time in the offspring. However, pup survival only ensued in the groups vaccinated with rNcROP40+rNcROP2 (16.2%) and rNcROP2 (6.3%). Interestingly, vertical transmission was not observed in those survivor pups immunized with rNcROP40+rNcROP2, as shown by PCR analyses. These results show a partial protection against N. caninum infection after vaccination with rNcROP40+rNcROP2, suggesting a synergistic effect of the two recombinant rhoptry antigens.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To further investigate the importance of insulin signaling in the growth, development, sexual maturation and egg production of adult schistosomes, we have focused attention on the insulin receptors (SjIRs) of Schistosoma japonicum, which we have previously cloned and partially characterised. We now show, by Biolayer Interferometry, that human insulin can bind the L1 subdomain (insulin binding domain) of recombinant (r)SjIR1 and rSjIR2 (designated SjLD1 and SjLD2) produced using the Drosophila S2 protein expression system. We have then used RNA interference (RNAi) to knock down the expression of the SjIRs in adult S. japonicum in vitro and show that, in addition to their reduced transcription, the transcript levels of other important downstream genes within the insulin pathway, associated with glucose metabolism and schistosome fecundity, were also impacted substantially. Further, a significant decrease in glucose uptake was observed in the SjIR-knockdown worms compared with luciferase controls. In vaccine/challenge experiments, we found that rSjLD1 and rSjLD2 depressed female growth, intestinal granuloma density and faecal egg production in S. japonicum in mice presented with a low dose challenge infection. These data re-emphasize the potential of the SjIRs as veterinary transmission blocking vaccine candidates against zoonotic schistosomiasis japonica in China and the Philippines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Repeated exposure of rabbits and other animals to ticks results in acquired resistance or immunity to subsequent tick bites and is partially elicited by antibodies directed against tick antigens. In this study we demonstrate the utility of a yeast surface display approach to identify tick salivary antigens that react with tick-immune serum. We constructed an Ixodes scapularis nymphal salivary gland yeast surface display library and screened the library with nymph-immune rabbit sera and identified five salivary antigens. Four of these proteins, designated P8, P19, P23 and P32, had a predicted signal sequence. We generated recombinant (r) P8, P19 and P23 in a Drosophila expression system for functional and immunization studies. rP8 showed anti-complement activity and rP23 demonstrated anti-coagulant activity. Ixodes scapularis feeding was significantly impaired when nymphs were fed on rabbits immunized with a cocktail of rP8, rP19 and rP23, a hall mark of tick-immunity. These studies also suggest that these antigens may serve as potential vaccine candidates to thwart tick feeding.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Leptospirosis is a worldwide zoonosis caused by pathogenic Leptospira. The whole-genome sequence of Leptospira interrogans serovar Copenhageni together with bioinformatic tools allow us to search for novel antigen candidates suitable for improved vaccines against leptospirosis. This study focused on three genes encoding conserved hypothetical proteins predicted to be exported to the outer membrane. The genes were amplified by PCR from six predominant pathogenic serovars in Brazil. The genes were cloned and expressed in Escherichia coli strain BL21-SI using the expression vector pDEST17. The recombinant proteins tagged with N-terminal 6xHis were purified by metal-charged chromatography. The proteins were recognized by antibodies present in sera from hamsters that were experimentally infected. Immunization of hamsters followed by challenge with a lethal dose of a virulent strain of Leptospira showed that the recombinant protein rLIC12730 afforded statistically significant protection to animals (44 %), followed by rLIC10494 (40 %) and rLIC12922 (30 %). Immunization with these proteins produced an increase in antibody titres during subsequent boosters, suggesting the involvement of a T-helper 2 response. Although more studies are needed, these data suggest that rLIC12730 and rLIC10494 are promising candidates for a multivalent vaccine for the prevention of leptospirosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oropouche virus (OROV), of the family Bunyaviridae, is the second most frequent arbovirus causing febrile disease in Brazil. In spite of this, little is known about pathogenesis of OROV infection. This report describes an experimental model of OROV in golden hamster (Mesocricetus auratus). Following subcutaneous inoculation of OROV, over 50% of the animals developed disease characterized by lethargy, ruffled fur, shivering, paralysis, and approximately one third died. Animals were sacrificed on days 1, 3, 5, 8 and 11 post-inoculation to collect tissue samples from brain, heart, liver, lung, spleen, muscle and blood for virus titration, histology and OROV immunohistochemistry. OROV was detected in high titers in blood, liver and brain, but not in the other organs. Histopathology revealed meningoencephalitis and hepatitis, with abundant OROV antigen detected in liver and brain. Diffuse galectin-3 immunostaining in brain and liver supports microglial and Kupfer cells activation. This is the first description of an experimental model for OROV infection and should be helpful to study pathogenesis and possibly to test antiviral interventions such as drugs and vaccine candidates. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: Meningococcal disease continues to be a serious public health concern, being associated with high morbidity and mortality rates in many countries from Latin America. In addition to discussing recent changes in the epidemiology of meningococcal disease in the region, we also analyse the development and potential impact of new vaccines on the prevention of meningococcal disease. Methods: MEDLINE, SciELO, LILACS and websites of the national Ministries of Health databases were searched using the terms meningococcal disease, meningococcal epidemiology, Neisseria meningitidis, meningococcal vaccines and the name of Latin America countries, from 1998 to 2008, with emphasis on review articles, clinical trials and epidemiological studies. Results: Epidemiology of meningococcal disease in Latin America is characterized by marked differences from country to country. The overall incidence of meningococcal disease per year varied from less than 0.1 cases per 100,000 inhabitants in countries like Mexico to two cases per 100,000 inhabitants in Brazil. The highest age-specific incidence of meningococcal disease occurred in infants less than 1 year of age. Serogroups B and C were responsible for the majority of cases reported, but the emergence of serogroups W135 and Y was reported in some countries. Serogroup A disease is now rare in Latin America. Discussion: Although a few countries have established meningitis surveillance programs, the information is not uniform, and the quality of the reported data is poor in the majority of the region. The availability of new effective meningococcal conjugate vaccines and promising protein-based vaccine candidates against meningococcus B highlights the importance of a better understanding of the true burden of meningococcal disease in Latin America and also the need for cost-effectiveness studies before incorporating the new meningococcal vaccines to national immunization programs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dengue, a disease caused by any of the four serotypes of dengue viruses, is the most important arthropod-borne viral disease in the world in terms of both morbidity and mortality. The infection by these viruses induces a plethora of clinical manifestations ranging from asymptomatic infections to severe diseases with involvement of several organs. Severe forms of the disease are more frequent in secondary infections by distinct serotypes and, consequently, a dengue vaccine must be tetravalent. Although several approaches have been used on the vaccine development, no vaccine is available against these viruses, especially because of problems on the development of a tetravalent vaccine. Here, we describe briefly the vaccine candidates available and their ability to elicit a protective immune response. We also discuss the problems and possibilities of any of the vaccines in final development stage reaching the market for human use.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Immunotherapy, especially therapeutic vaccination, has a great deal of potential in the treatment of cancer and certain infectious diseases such as HIV (Allison et al., 2006; Fauci et al., 2008; Feldmann and Steinman, 2005). Numerous vaccine candidates have been tested in patients with a variety of tumor types and chronic viral diseases. Often, the best way to assess the clinical potential of these vaccines is to monitor the induced T cell response, and yet there are currently no standards for reporting these results. This letter is an effort to address this problem.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

T-cell vaccination may prevent or treat cancer and infectious diseases, but further progress is required to increase clinical efficacy. Step-by-step improvements of T-cell vaccination in phase I/II clinical studies combined with very detailed analysis of T-cell responses at the single cell level are the strategy of choice for the identification of the most promising vaccine candidates for testing in subsequent large-scale phase III clinical trials. Major aims are to fully identify the most efficient T-cells in anticancer therapy, to characterize their TCRs, and to pinpoint the mechanisms of T-cell recruitment and function in well-defined clinical situations. Here we discuss novel strategies for the assessment of human T-cell responses, revealing in part unprecedented insight into T-cell biology and novel structural principles that govern TCR-pMHC recognition. Together, the described approaches advance our knowledge of T-cell mediated-protection from human diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The design of malarial vaccine based on the circumsporozoite (CS) protein, a majuor surface antigen of the sporozoite stage of the malaria parasite, requires the identification of T and B cell epitopes for inclusion in recombinant or synthetic vaccine candidates. We have investigated the specificity and function of a series of T cell clones, derived from volunteers immunized with Plasmodium falciparum sporozoites in an effort to identify relevant epitopes in the immune response to the pre-erythrocytic stages of the parasite. CD4+ T cell clones were obtained wich specifically recognized a repetitive epitope located in the 5'repeat region of the CS protein. This epitope, when conjugated to the 3'repeat region in a synthetic MAPs construct, induced high titers of antisporozoite antibodies in C57B1 mice. A second T cell epitope, which mapped to aa 326-345 of the carboxy terminal, was recognized by lytic, as well as non-lytic, CD4+ T cells derived from the sporozoite-immunized volunteers. The demonstration of CD4+ CTL in the volunteers, and the recent studies inthe rodent model (Renia et al., 1991; Tsuji et al., 1990), suggested that CS-specific CD4+ T cells, in addition to their indirect role as helper cells in the induction of antibody and CD8 + effector cells, may also play a direct role in protection against sporozoite challenge by targeting EEF within the liver.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multiple antigen peptide systems (MAPs) allow the incorporation of various epitopes in to a single synthetic peptide immunogen. We have characterized the immune response of BALB/c mice to a series of MAPs assembled with different B and T cell epitopes derived from the Plasmodium vivax circumsporozoite (CS) protein. A B-cell epitope from the central repeat domain and two T-cell epitopes from the amino and carboxyl flanking regions were used to assembled eight different MAPs. An additional universal T cell epitope (ptt-30) from tetanus toxin protein was included. Immunogenicity in terms of antibody responses and in vitro T lymphocyte proliferation was evaluated. MAPs containing B and T cell epitopes induced high titers of anti-peptides antibodies, which recognized the native protein on sporozoites as determined by IFAT. The antibody specificity was also determined by a competitive inhibition assay with different MAPs. A MAP containing the B cell epitope (p11) and the universal epitope ptt-30 together with another composed of p11 and the promiscuous T cell epitope (p25) proved to be the most immunogenic. The strong antibody response and specificity for the cognate protein indicates that further studies designed to assess the potential of these proteins as human malaria vaccine candidates are warranted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vaccines in schistosomiasis using homologous antigens have been studied extensively in experimentally infected mammalian hosts. Vaccines using heterologous antigens have received comparatively less attention. This review summarizes recent work on a heterologous 12 kDa Fasciola hepatica antigenic polypeptide which cross reacts with Schistosoma mansoni. A cDNA has been cloned and sequenced, and the predicted amino acid sequence of the recombinant protein has been shown to have significant (44) identity with a 14 kDa S. mansoni fatty acid binding protein. Thus in the parasitic trematodes fatty acid binding proteins may be potential vaccine candidates. The F. hepatica recombinant protein has been overexpressed and purified and denoted rFh15. Preliminary rFh15 migrates more slowly (i.e. may be slightly larger) than nFh12 on SDS-PAGE and has a predicted pI of 6.01 vs. observed pI of 5.45. Mice infected with F. hepatica develop antibodies to nFh12 by 2 weeks of infection vs. 6 weeks of infection to rFh15; on the other hand, mice with schistosomiasis mansoni develop antibodies to both nFh12 and rFh15 by 6 weeks of infection. Both the F. hepatica and S. mansoni cross-reactive antigens may be cross-protective antigens with the protection inducing capability against both species.