939 resultados para Upper Peninsula


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Near Karnezeika a roughly 140 m thick Upper Cretaceous section consists of interbedded pelagic limestones, cherts and coarse polymict breccias including ophiolites and shallow water limestones. At the base, pink pelagic limestones rest on deeply altered and fractured Lower Jurassic Pantokrator Limestone. This first pelagic facies is dated as middle Turonian, based on planktonic Foraminifera. Over 100 m of coarse ophiolite-carbonate breccias, interpreted as a channel or canyon fill in a pelagic environment, document the erosion of the Late Jurassic nappe edifice along the Cretaceous Pelagonian margin. Above these breccias, we mesured 16 m of principally pink and red pelagic limestones and radiolarian cherts, in which we recovered well-preserved radiolarians discussed here. In this interval, the presence of planktonic Foraminfera allows to state a late Turonian to Coniacian age. More than 40 radiolarian species are described and figured in this work. The radiolarian chronostratigraphy established by 10 different authors in 11 publications was compared for this study and used to establish radiolarian ranges. This exercise shows major discrepancies between authors for the radiolarian ranges of the studied assemblage. Nevertheless, a Turonian age can be stated based on a synthesis of cited radiolarian ranges. This age is consistent with the age based on planktonic foraminifera. In combining the ages of both Radiolaria and planktonic Foraminifera, the studied samples can be restricted to the late Turonian. However, the discrepancies of published radiolarian ranges call for an urgent, major revision of the Late Cretaceous radiolarian biochronology. The integration of planktonic foraminifera with radiolarians may greatly enhance biochronologic resolution in sections where both groups occur.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effec s of relative water level changes in Lake Ontario were detected in the ysical, chemical and biological characteristics of the sediments of the Fifteen, Sixteen and Twenty Mile Creek lagoonal complexes. Regional environmental changes have occurred resulting in the following sequence of sediments in the three lagoons and marsh. From the base up they are; (I) Till,(2) Pink Clay, (3) Bottom Sand, (4) Gyttja, (5) Orange Sandy Silt, (6) Brown Clay and (7) Gray Clay. The till was only encountered in the marsh and channel; however, it is presumed to occur throughout the entire area. The presence of diatoms and sponge spicules, the vertical and ongitudinal uniformity of the sediment and the stratigr ic position of the Pink Clay indicate that it has a glacial or post-glacial lacustrine origin. Overl ng the Pink Clay or Till is a clayey, silty sand to gravel. The downstream fining and unsorted nature of this material indicate that it has a fluvial/deltaic origin. Water levels began rising in the lagoon 3,250 years ago resulting in the deposition of the Gyttja, a brown, organic-rich silty clay probably deposited in a shallow, stagnant environment as shown by the presence of pyrite in the organic material and relatively high proportions of benthic diatoms and grass pollen. Increase in the rate of deposition of the Gyttja on Twenty Mile Creek and a decrease in the same unit on Sixteen Mile Creek is possibly the result of a capture of the Sixteen Mile Creek by the Twenty Mile Creek. The rise in lake level responsible for the onset and transgression of this III unit may have been produced by isostatic rebound; however, the deposition also corresponds closely to a drop in the level of Lake Huron and increased flow through the lower lakes. The o ange Sandy Silt, present only in the marsh, appears to be a buried soil horizon as shown by oxidized roots, and may be the upland equivalant to the Gyttja. Additional deepening resulted in the deposition of Brown Clay, a unit which only occurs at the lakeward end of the three lagoons. The decrease in grass pollen and the relatively high proportion of pelagic diatoms are evidence for this. The deepening may be the result of isostatic rebound; however, the onset of its deposition at 1640 years B.P. is synchronous in the three lagoons and corresponds to the end of the subAtlantic climatic episode. The effects of the climatic change in southern Ontario is uncertain. Average deposition rates of the Brown Clay are similar to those in the upper Gyttja on Sixteen Mile Creek; however, Twenty Mile Creek shows lower rates of the Brown Clay than those in the upper Gyttja. The Gray Clay covers the present bottom of the three lagoons and also occurs in the marsh It is inter1aminated wi sand in the channels. Increases in the rates of deposi ion, high concentrations of Ca and Zn, an Ambrosia rise, and an increase in bioturbation possibly due to the activities of the carp, indicate th this unit is a recent deposit resulting from the activities of man.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sediments recovered from seven Last Glacial Maximum grounding lines sites, around the Antarctic Peninsula, were analyzed using micromorphology. This is the first evidence that grounding line sediments from around the Antarctic Peninsula have complex deformational histories and subglacial origins. It was determined that grounding zone wedge contain multiple units, or diamicton layers, with homogenized boundaries. The multiple diamicton units / layers are due to the accretionary formation of a grounding line wedge. All the sediments were deposited via deformation, and continual reincorporation, homogenization of lower diamicton layers by upper diamicton layers produced what macroscopically appeared to be a single massive diamicton unit. The morainal ridge that was sampled, alternatively, is composed of a single unit, or diamicton layer, that was subglacial in origin and believed to have been pushed out to form a ridge that was subsequently deformed via glacial push.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our understanding of the ancient ocean-atmosphere system has focused on oceanic proxies. However, the study of terrestrial proxies is equally necessary to constrain our understanding of ancient climates and linkages between the terrestrial and oceanic carbon reservoirs. We have analyzed carbon-isotope ratios from fossil plant material through the Valanginian and Lower Hauterivian from a shallow-marine, ammonite-constrained succession in the Crimean Peninsula of the southern Ukraine in order to determine if the Upper Valanginian positive carbon-isotope excursion is expressed in the atmosphere. delta(13)C(plant) values fluctuate around -23% to -22% for the Valanginian-Hauterivian, except during the Upper Valanginian where delta(13)C(plant) values record a positive excursion to similar to-18%. Based upon ammonite biostratigraphy from Crimea, and in conjunction with a composite Tethyan marine delta(13)C(carb) curve, several conclusions can be drawn: (1) the delta(13)C(plant) record indicates that the atmospheric carbon reservoir was affected; (2) the defined ammonite correlations between Europe and Crimea are synchronous; and (3) a change in photosynthetic carbon-isotope fractionation, caused by a decrease in atmospheric PCO2, occurred during the Upper Valanginian Positive delta(13)C excursion. Our new data, combined with other paleoenvironmental and paleoclimatic information, indicate that the Upper Valanginian was a cool period (icehouse) and highlights that the Cretaceous period was interrupted by periods of cooling and was not an equable climate as previously thought. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Selected multi-proxy and accurately dated marine and terrestrial records covering the past 2000 years in the Iberian Peninsula (IP) facilitated a comprehensive regional paleoclimate reconstruction for the Medieval Climate Anomaly (MCA: 900-1300 AD). The sequences enabled an integrated approach to land-sea comparisons and, despite local differences and some minor chronological inconsistencies, presented clear evidence that the MCA was a dry period in the Mediterranean IP. It was a period characterized by decreased lake levels, more xerophytic and heliophytic vegetation, a low frequency of floods, major Saharan eolian fluxes, and less fluvial input to marine basins. In contrast, reconstruction based on sequences from the Atlantic Ocean side of the peninsula indicated increased humidity. The data highlight the unique characteristics of the MCA relative to earlier (the Dark Ages, DA: ca. 500-900 years AD) and subsequent (the Little Ice Age, LIA: 1300-1850 years AD) colder periods. The reconstruction supports the hypothesis of Trouet et al. (2009, doi:10.1126/science.1166349), that a persistent positive mode of the North Atlantic Oscillation (NAO) dominated the MCA.