936 resultados para Unitary similarity
Resumo:
Space-Time Block Codes (STBCs) from Complex Orthogonal Designs (CODs) are single-symbol decodable/symbol-by-symbol decodable (SSD); however, SSD codes are obtainable from designs that are not CODs. Recently, two such classes of SSD codes have been studied: (i) Coordinate Interleaved Orthogonal Designs (CIODs) and (ii) Minimum-Decoding-Complexity (MDC) STBCs from Quasi-ODs (QODs). The class of CIODs have non-unitary weight matrices when written as a Linear Dispersion Code (LDC) proposed by Hassibi and Hochwald, whereas the other class of SSD codes including CODs have unitary weight matrices. In this paper, we construct a large class of SSD codes with nonunitary weight matrices. Also, we show that the class of CIODs is a special class of our construction.
Resumo:
Self-similarity, a concept taken from mathematics, is gradually becoming a keyword in musicology. Although a polysemic term, self-similarity often refers to the multi-scalar feature repetition in a set of relationships, and it is commonly valued as an indication for musical coherence and consistency . This investigation provides a theory of musical meaning formation in the context of intersemiosis, that is, the translation of meaning from one cognitive domain to another cognitive domain (e.g. from mathematics to music, or to speech or graphic forms). From this perspective, the degree of coherence of a musical system relies on a synecdochic intersemiosis: a system of related signs within other comparable and correlated systems. This research analyzes the modalities of such correlations, exploring their general and particular traits, and their operational bounds. Looking forward in this direction, the notion of analogy is used as a rich concept through its two definitions quoted by the Classical literature: proportion and paradigm, enormously valuable in establishing measurement, likeness and affinity criteria. Using quantitative qualitative methods, evidence is presented to justify a parallel study of different modalities of musical self-similarity. For this purpose, original arguments by Benoît B. Mandelbrot are revised, alongside a systematic critique of the literature on the subject. Furthermore, connecting Charles S. Peirce s synechism with Mandelbrot s fractality is one of the main developments of the present study. This study provides elements for explaining Bolognesi s (1983) conjecture, that states that the most primitive, intuitive and basic musical device is self-reference, extending its functions and operations to self-similar surfaces. In this sense, this research suggests that, with various modalities of self-similarity, synecdochic intersemiosis acts as system of systems in coordination with greater or lesser development of structural consistency, and with a greater or lesser contextual dependence.
Resumo:
This is a continuation of the earlier work (Publ. Res. Inst. Math. Sci. 45 (2009) 745-785) to characterize unitary stationary independent increment Gaussian processes. The earlier assumption of uniform continuity is replaced by weak continuity and with technical assumptions on the domain of the generator, unitary equivalence of the process to the solution of an appropriate Hudson-Parthasarathy equation is proved.
Resumo:
The characteristic function for a contraction is a classical complete unitary invariant devised by Sz.-Nagy and Foias. Just as a contraction is related to the Szego kernel k(S) (z, w) = (1 - z (w) over tilde)(-1) for |z|, |w| < 1, by means of (1/k(S))(T,T*) >= 0, we consider an arbitrary open connected domain Omega in C-n, a complete Pick kernel k on Omega and a tuple T = (T-1, ..., T-n) of commuting bounded operators on a complex separable Hilbert space H such that (1/k)(T,T*) >= 0. For a complete Pick kernel the 1/k functional calculus makes sense in a beautiful way. It turns out that the model theory works very well and a characteristic function can be associated with T. Moreover, the characteristic function is then a complete unitary invariant for a suitable class of tuples T.
Resumo:
Failure to repair DNA double-strand breaks (DSBs) can lead to cell death or cancer. Although nonhomologous end joining (NHEJ) has been studied extensively in mammals, little is known about it in primary tissues. Using oligomeric DNA mimicking endogenous DSBs, NHEJ in cell-free extracts of rat tissues were studied. Results show that efficiency of NHEJ is highest in lungs compared to other somatic tissues. DSBs with compatible and blunt ends joined without modifications, while noncompatible ends joined with minimal alterations in lungs and testes. Thymus exhibited elevated joining, followed by brain and spleen, which could be correlated with NHEJ gene expression. However, NHEJ efficiency was poor in terminally differentiated organs like heart, kidney and liver. Strikingly, NHEJ junctions from these tissues also showed extensive deletions and insertions. Hence, for the first time, we show that despite mode of joining being generally comparable, efficiency of NHEJ varies among primary tissues of mammals.
Resumo:
Structure comparison tools can be used to align related protein structures to identify structurally conserved and variable regions and to infer functional and evolutionary relationships. While the conserved regions often superimpose well, the variable regions appear non superimposable. Differences in homologous protein structures are thought to be due to evolutionary plasticity to accommodate diverged sequences during evolution. One of the kinds of differences between 3-D structures of homologous proteins is rigid body displacement. A glaring example is not well superimposed equivalent regions of homologous proteins corresponding to a-helical conformation with different spatial orientations. In a rigid body superimposition, these regions would appear variable although they may contain local similarity. Also, due to high spatial deviation in the variable region, one-to-one correspondence at the residue level cannot be determined accurately. Another kind of difference is conformational variability and the most common example is topologically equivalent loops of two homologues but with different conformations. In the current study, we present a refined view of the ``structurally variable'' regions which may contain local similarity obscured in global alignment of homologous protein structures. As structural alphabet is able to describe local structures of proteins precisely through Protein Blocks approach, conformational similarity has been identified in a substantial number of `variable' regions in a large data set of protein structural alignments; optimal residue-residue equivalences could be achieved on the basis of Protein Blocks which led to improved local alignments. Also, through an example, we have demonstrated how the additional information on local backbone structures through protein blocks can aid in comparative modeling of a loop region. In addition, understanding on sequence-structure relationships can be enhanced through our approach. This has been illustrated through examples where the equivalent regions in homologous protein structures share sequence similarity to varied extent but do not preserve local structure.
Resumo:
The unsteady laminar incompressible boundary layer flow of an electrically conducting fluid in the stagnation region of two-dimensional and axisymmetric bodies with an applied magnetic field has been studied. The boundary layer equations which are parabolic partial differential equations with three independent variables have been reduced to a system of ordinary differential equations by using suitable transformations and then solved numerically using a shooting method. Here, we have obtained new solutions which are solutions of both the boundary layer and Navier-Stokes equations.
Resumo:
In this paper we consider the problem of learning an n × n kernel matrix from m(1) similarity matrices under general convex loss. Past research have extensively studied the m = 1 case and have derived several algorithms which require sophisticated techniques like ACCP, SOCP, etc. The existing algorithms do not apply if one uses arbitrary losses and often can not handle m > 1 case. We present several provably convergent iterative algorithms, where each iteration requires either an SVM or a Multiple Kernel Learning (MKL) solver for m > 1 case. One of the major contributions of the paper is to extend the well knownMirror Descent(MD) framework to handle Cartesian product of psd matrices. This novel extension leads to an algorithm, called EMKL, which solves the problem in O(m2 log n 2) iterations; in each iteration one solves an MKL involving m kernels and m eigen-decomposition of n × n matrices. By suitably defining a restriction on the objective function, a faster version of EMKL is proposed, called REKL,which avoids the eigen-decomposition. An alternative to both EMKL and REKL is also suggested which requires only an SVMsolver. Experimental results on real world protein data set involving several similarity matrices illustrate the efficacy of the proposed algorithms.
Resumo:
It has been shown recently that the maximum rate of a 2-real-symbol (single-complex-symbol) maximum likelihood (ML) decodable, square space-time block codes (STBCs) with unitary weight matrices is 2a/2a complex symbols per channel use (cspcu) for 2a number of transmit antennas [1]. These STBCs are obtained from Unitary Weight Designs (UWDs). In this paper, we show that the maximum rates for 3- and 4-real-symbol (2-complex-symbol) ML decodable square STBCs from UWDs, for 2a transmit antennas, are 3(a-1)/2a and 4(a-1)/2a cspcu, respectively. STBCs achieving this maximum rate are constructed. A set of sufficient conditions on the signal set, required for these codes to achieve full-diversity are derived along with expressions for their coding gain.
Resumo:
It is well known that the space-time block codes (STBCs) from complex orthogonal designs (CODs) are single-symbol decodable/symbol-by-symbol decodable (SSD). The weight matrices of the square CODs are all unitary and obtainable from the unitary matrix representations of Clifford Algebras when the number of transmit antennas n is a power of 2. The rate of the square CODs for n = 2(a) has been shown to be a+1/2(a) complex symbols per channel use. However, SSD codes having unitary-weight matrices need not be CODs, an example being the minimum-decoding-complexity STBCs from quasi-orthogonal designs. In this paper, an achievable upper bound on the rate of any unitary-weight SSD code is derived to be a/2(a)-1 complex symbols per channel use for 2(a) antennas, and this upper bound is larger than that of the CODs. By way of code construction, the interrelationship between the weight matrices of unitary-weight SSD codes is studied. Also, the coding gain of all unitary-weight SSD codes is proved to be the same for QAM constellations and conditions that are necessary for unitary-weight SSD codes to achieve full transmit diversity and optimum coding gain are presented.
Resumo:
We associate a sheaf model to a class of Hilbert modules satisfying a natural finiteness condition. It is obtained as the dual to a linear system of Hermitian vector spaces (in the sense of Grothendieck). A refined notion of curvature is derived from this construction leading to a new unitary invariant for the Hilbert module. A division problem with bounds, originating in Douady's privilege, is related to this framework. A series of concrete computations illustrate the abstract concepts of the paper.
Resumo:
The rapidly growing structure databases enhance the probability of finding identical sequences sharing structural similarity. Structure prediction methods are being used extensively to abridge the gap between known protein sequences and the solved structures which is essential to understand its specific biochemical and cellular functions. In this work, we plan to study the ambiguity between sequence-structure relationships and examine if sequentially identical peptide fragments adopt similar three-dimensional structures. Fragments of varying lengths (five to ten residues) were used to observe the behavior of sequence and its three-dimensional structures. The STAMP program was used to superpose the three-dimensional structures and the two parameters (Sequence Structure Similarity Score (Sc) and Root Mean Square Deviation value) were employed to classify them into three categories: similar, intermediate and dissimilar structures. Furthermore, the same approach was carried out on all the three-dimensional protein structures solved in the two organisms, Mycobacterium tuberculosis and Plasmodium falciparum to validate our results.
Resumo:
Competition theory predicts that local communities should consist of species that are more dissimilar than expected by chance. We find a strikingly different pattern in a multicontinent data set (55 presence-absence matrices from 24 locations) on the composition of mixed-species bird flocks, which are important sub-units of local bird communities the world over. By using null models and randomization tests followed by meta-analysis, we find the association strengths of species in flocks to be strongly related to similarity in body size and foraging behavior and higher for congeneric compared with noncongeneric species pairs. Given the local spatial scales of our individual analyses, differences in the habitat preferences of species are unlikely to have caused these association patterns; the patterns observed are most likely the outcome of species interactions. Extending group-living and social-information-use theory to a heterospecific context, we discuss potential behavioral mechanisms that lead to positive interactions among similar species in flocks, as well as ways in which competition costs are reduced. Our findings highlight the need to consider positive interactions along with competition when seeking to explain community assembly.
Resumo:
How do we perform rapid visual categorization?It is widely thought that categorization involves evaluating the similarity of an object to other category items, but the underlying features and similarity relations remain unknown. Here, we hypothesized that categorization performance is based on perceived similarity relations between items within and outside the category. To this end, we measured the categorization performance of human subjects on three diverse visual categories (animals, vehicles, and tools) and across three hierarchical levels (superordinate, basic, and subordinate levels among animals). For the same subjects, we measured their perceived pair-wise similarities between objects using a visual search task. Regardless of category and hierarchical level, we found that the time taken to categorize an object could be predicted using its similarity to members within and outside its category. We were able to account for several classic categorization phenomena, such as (a) the longer times required to reject category membership; (b) the longer times to categorize atypical objects; and (c) differences in performance across tasks and across hierarchical levels. These categorization times were also accounted for by a model that extracts coarse structure from an image. The striking agreement observed between categorization and visual search suggests that these two disparate tasks depend on a shared coarse object representation.