965 resultados para Underwater bio-acoustic event detection
Resumo:
Even simple hybrid systems like the classic bouncing ball can exhibit Zeno behaviors. The existence of this type of behavior has so far forced simulators to either ignore some events or risk looping indefinitely. This in turn forces modelers to either insert ad hoc restrictions to circumvent Zeno behavior or to abandon hybrid modeling. To address this problem, we take a fresh look at event detection and localization. A key insight that emerges from this investigation is that an enclosure for a given time interval can be valid independently of the occurrence of a given event. Such an event can then even occur an unbounded number of times, thus making it possible to handle certain types of Zeno behavior.
Resumo:
The Semantic Web has come a long way since its inception in 2001, especially in terms of technical development and research progress. However, adoption by non- technical practitioners is still an ongoing process, and in some areas this process is just now starting. Emergency response is an area where reliability and timeliness of information and technologies is of essence. Therefore it is quite natural that more widespread adoption in this area has not been seen until now, when Semantic Web technologies are mature enough to support the high requirements of the application area. Nevertheless, to leverage the full potential of Semantic Web research results for this application area, there is need for an arena where practitioners and researchers can meet and exchange ideas and results. Our intention is for this workshop, and hopefully coming workshops in the same series, to be such an arena for discussion. The Extended Semantic Web Conference (ESWC - formerly the European Semantic Web conference) is one of the major research conferences in the Semantic Web field, whereas this is a suitable location for this workshop in order to discuss the application of Semantic Web technology to our specific area of applications. Hence, we chose to arrange our first SMILE workshop at ESWC 2013. However, this workshop does not focus solely on semantic technologies for emergency response, but rather Semantic Web technologies in combination with technologies and principles for what is sometimes called the "social web". Social media has already been used successfully in many cases, as a tool for supporting emergency response. The aim of this workshop is therefore to take this to the next level and answer questions like: "how can we make sense of, and furthermore make use of, all the data that is produced by different kinds of social media platforms in an emergency situation?" For the first edition of this workshop the chairs collected the following main topics of interest: • Semantic Annotation for understanding the content and context of social media streams. • Integration of Social Media with Linked Data. • Interactive Interfaces and visual analytics methodologies for managing multiple large-scale, dynamic, evolving datasets. • Stream reasoning and event detection. • Social Data Mining. • Collaborative tools and services for Citizens, Organisations, Communities. • Privacy, ethics, trustworthiness and legal issues in the Social Semantic Web. • Use case analysis, with specific interest for use cases that involve the application of Social Media and Linked Data methodologies in real-life scenarios. All of these, applied in the context of: • Crisis and Disaster Management • Emergency Response • Security and Citizen Journalism The workshop received 6 high-quality paper submissions and based on a thorough review process, thanks to our program committee, the decision was made to accept four of these papers for the workshop (67% acceptance rate). These four papers can be found later in this proceedings volume. Three out of four of these papers particularly discuss the integration and analysis of social media data, using Semantic Web technologies, e.g. for detecting complex events in social media streams, for visualizing and analysing sentiments with respect to certain topics in social media, or for detecting small-scale incidents entirely through the use of social media information. Finally, the fourth paper presents an architecture for using Semantic Web technologies in resource management during a disaster. Additionally, the workshop featured an invited keynote speech by Dr. Tomi Kauppinen from Aalto university. Dr. Kauppinen shared experiences from his work on applying Semantic Web technologies to application fields such as geoinformatics and scientific research, i.e. so-called Linked Science, but also recent ideas and applications in the emergency response field. His input was also highly valuable for the roadmapping discussion, which was held at the end of the workshop. A separate summary of the roadmapping session can be found at the end of these proceedings. Finally, we would like to thank our invited speaker Dr. Tomi Kauppinen, all our program committee members, as well as the workshop chair of ESWC2013, Johanna Völker (University of Mannheim), for helping us to make this first SMILE workshop a highly interesting and successful event!
Resumo:
Even simple hybrid automata like the classic bouncing ball can exhibit Zeno behavior. The existence of this type of behavior has so far forced a large class of simulators to either ignore some events or risk looping indefinitely. This in turn forces modelers to either insert ad-hoc restrictions to circumvent Zeno behavior or to abandon hybrid automata. To address this problem, we take a fresh look at event detection and localization. A key insight that emerges from this investigation is that an enclosure for a given time interval can be valid independent of the occurrence of a given event. Such an event can then even occur an unbounded number of times. This insight makes it possible to handle some types of Zeno behavior. If the post-Zeno state is defined explicitly in the given model of the hybrid automaton, the computed enclosure covers the corresponding trajectory that starts from the Zeno point through a restarted evolution.
Resumo:
The main challenges of multimedia data retrieval lie in the effective mapping between low-level features and high-level concepts, and in the individual users' subjective perceptions of multimedia content. ^ The objectives of this dissertation are to develop an integrated multimedia indexing and retrieval framework with the aim to bridge the gap between semantic concepts and low-level features. To achieve this goal, a set of core techniques have been developed, including image segmentation, content-based image retrieval, object tracking, video indexing, and video event detection. These core techniques are integrated in a systematic way to enable the semantic search for images/videos, and can be tailored to solve the problems in other multimedia related domains. In image retrieval, two new methods of bridging the semantic gap are proposed: (1) for general content-based image retrieval, a stochastic mechanism is utilized to enable the long-term learning of high-level concepts from a set of training data, such as user access frequencies and access patterns of images. (2) In addition to whole-image retrieval, a novel multiple instance learning framework is proposed for object-based image retrieval, by which a user is allowed to more effectively search for images that contain multiple objects of interest. An enhanced image segmentation algorithm is developed to extract the object information from images. This segmentation algorithm is further used in video indexing and retrieval, by which a robust video shot/scene segmentation method is developed based on low-level visual feature comparison, object tracking, and audio analysis. Based on shot boundaries, a novel data mining framework is further proposed to detect events in soccer videos, while fully utilizing the multi-modality features and object information obtained through video shot/scene detection. ^ Another contribution of this dissertation is the potential of the above techniques to be tailored and applied to other multimedia applications. This is demonstrated by their utilization in traffic video surveillance applications. The enhanced image segmentation algorithm, coupled with an adaptive background learning algorithm, improves the performance of vehicle identification. A sophisticated object tracking algorithm is proposed to track individual vehicles, while the spatial and temporal relationships of vehicle objects are modeled by an abstract semantic model. ^
Resumo:
This work presents a low cost architecture for development of synchronized phasor measurement units (PMU). The device is intended to be connected in the low voltage grid, which allows the monitoring of transmission and distribution networks. Developments of this project include a complete PMU, with instrumentation module for use in low voltage network, GPS module to provide the sync signal and time stamp for the measures, processing unit with the acquisition system, phasor estimation and formatting data according to the standard and finally, communication module for data transmission. For the development and evaluation of the performance of this PMU, it was developed a set of applications in LabVIEW environment with specific features that let analyze the behavior of the measures and identify the sources of error of the PMU, as well as to apply all the tests proposed by the standard. The first application, useful for the development of instrumentation, consists of a function generator integrated with an oscilloscope, which allows the generation and acquisition of signals synchronously, in addition to the handling of samples. The second and main, is the test platform, with capabality of generating all tests provided by the synchronized phasor measurement standard IEEE C37.118.1, allowing store data or make the analysis of the measurements in real time. Finally, a third application was developed to evaluate the results of the tests and generate calibration curves to adjust the PMU. The results include all the tests proposed by synchrophasors standard and an additional test that evaluates the impact of noise. Moreover, through two prototypes connected to the electrical installation of consumers in same distribution circuit, it was obtained monitoring records that allowed the identification of loads in consumer and power quality analysis, beyond the event detection at the distribution and transmission levels.
Resumo:
Thanks to the advanced technologies and social networks that allow the data to be widely shared among the Internet, there is an explosion of pervasive multimedia data, generating high demands of multimedia services and applications in various areas for people to easily access and manage multimedia data. Towards such demands, multimedia big data analysis has become an emerging hot topic in both industry and academia, which ranges from basic infrastructure, management, search, and mining to security, privacy, and applications. Within the scope of this dissertation, a multimedia big data analysis framework is proposed for semantic information management and retrieval with a focus on rare event detection in videos. The proposed framework is able to explore hidden semantic feature groups in multimedia data and incorporate temporal semantics, especially for video event detection. First, a hierarchical semantic data representation is presented to alleviate the semantic gap issue, and the Hidden Coherent Feature Group (HCFG) analysis method is proposed to capture the correlation between features and separate the original feature set into semantic groups, seamlessly integrating multimedia data in multiple modalities. Next, an Importance Factor based Temporal Multiple Correspondence Analysis (i.e., IF-TMCA) approach is presented for effective event detection. Specifically, the HCFG algorithm is integrated with the Hierarchical Information Gain Analysis (HIGA) method to generate the Importance Factor (IF) for producing the initial detection results. Then, the TMCA algorithm is proposed to efficiently incorporate temporal semantics for re-ranking and improving the final performance. At last, a sampling-based ensemble learning mechanism is applied to further accommodate the imbalanced datasets. In addition to the multimedia semantic representation and class imbalance problems, lack of organization is another critical issue for multimedia big data analysis. In this framework, an affinity propagation-based summarization method is also proposed to transform the unorganized data into a better structure with clean and well-organized information. The whole framework has been thoroughly evaluated across multiple domains, such as soccer goal event detection and disaster information management.
Resumo:
Scientific background: Marine mammals use sound for communication, navigation and prey detection. Acoustic sensors therefore allow the detection of marine mammals, even during polar winter months, when restricted visibility prohibits visual sightings. The animals are surrounded by a permanent natural soundscape, which, in polar waters, is mainly dominated by the movement of ice. In addition to the detection of marine mammals, acoustic long-term recordings provide information on intensity and temporal variability of characteristic natural and anthropogenic background sounds, as well as their influence on the vocalization of marine mammals Scientific objectives: The PerenniAL Acoustic Observatory in the Antarctic Ocean (PALAOA, Hawaiian "whale") near Neumayer Station is intended to record the underwater soundscape in the vicinity of the shelf ice edge over the duration of several years. These long-term recordings will allow studying the acoustic repertoire of whales and seals continuously in an environment almost undisturbed by humans. The data will be analyzed to (1) register species specific vocalizations, (2) infer the approximate number of animals inside the measuring range, (3) calculate their movements relative to the observatory, and (4) examine possible effects of the sporadic shipping traffic on the acoustic and locomotive behaviour of marine mammals. The data, which are largely free of anthropogenic noise, provide also a base to set up passive acoustic mitigation systems used on research vessels. Noise-free bioacoustic data thereby represent the foundation for the development of automatic pattern recognition procedures in the presence of interfering sounds, e.g. propeller noise.
Resumo:
Underwater acoustic sensor networks (UASNs) have become more and more important in ocean exploration applications, such as ocean monitoring, pollution detection, ocean resource management, underwater device maintenance, etc. In underwater acoustic sensor networks, since the routing protocol guarantees reliable and effective data transmission from the source node to the destination node, routing protocol design is an attractive topic for researchers. There are many routing algorithms have been proposed in recent years. To present the current state of development of UASN routing protocols, we review herein the UASN routing protocol designs reported in recent years. In this paper, all the routing protocols have been classified into different groups according to their characteristics and routing algorithms, such as the non-cross-layer design routing protocol, the traditional cross-layer design routing protocol, and the intelligent algorithm based routing protocol. This is also the first paper that introduces intelligent algorithm-based UASN routing protocols. In addition, in this paper, we investigate the development trends of UASN routing protocols, which can provide researchers with clear and direct insights for further research.
Resumo:
Acoustic Emission (AE) monitoring can be used to detect the presence of damage as well as determine its location in Structural Health Monitoring (SHM) applications. Information on the time difference of the signal generated by the damage event arriving at different sensors is essential in performing localization. This makes the time of arrival (ToA) an important piece of information to retrieve from the AE signal. Generally, this is determined using statistical methods such as the Akaike Information Criterion (AIC) which is particularly prone to errors in the presence of noise. And given that the structures of interest are surrounded with harsh environments, a way to accurately estimate the arrival time in such noisy scenarios is of particular interest. In this work, two new methods are presented to estimate the arrival times of AE signals which are based on Machine Learning. Inspired by great results in the field, two models are presented which are Deep Learning models - a subset of machine learning. They are based on Convolutional Neural Network (CNN) and Capsule Neural Network (CapsNet). The primary advantage of such models is that they do not require the user to pre-define selected features but only require raw data to be given and the models establish non-linear relationships between the inputs and outputs. The performance of the models is evaluated using AE signals generated by a custom ray-tracing algorithm by propagating them on an aluminium plate and compared to AIC. It was found that the relative error in estimation on the test set was < 5% for the models compared to around 45% of AIC. The testing process was further continued by preparing an experimental setup and acquiring real AE signals to test on. Similar performances were observed where the two models not only outperform AIC by more than a magnitude in their average errors but also they were shown to be a lot more robust as compared to AIC which fails in the presence of noise.
Resumo:
Underwater acoustic networks can be quite effective to establish communication links between autonomous underwater vehicles (AUVs) and other vehicles or control units, enabling complex vehicle applications and control scenarios. A communications and control framework to support the use of underwater acoustic networks and sample application scenarios are described for single and multi-AUV operation.
Resumo:
In the present work, the development of a genosensor for the event-specific detection of MON810 transgenic maize is proposed. Taking advantage of nanostructuration, a cost-effective three dimensional electrode was fabricated and a ternary monolayer containing a dithiol, a monothiol and the thiolated capture probe was optimized to minimize the unspecific signals. A sandwich format assay was selected as a way of precluding inefficient hybridization associated with stable secondary target structures. A comparison between the analytical performance of the Au nanostructured electrodes and commercially available screen-printed electrodes highlighted the superior performance of the nanostructured ones. Finally, the genosensor was effectively applied to detect the transgenic sequence in real samples, showing its potential for future quantitative analysis.
Resumo:
Oceans have shown tremendous importance and impact on our lives. Thus the need for monitoring and protecting the oceans has grown exponentially in recent years. On the other hand, oceans have economical and industrial potential in areas such as pharmaceutical, oil, minerals and biodiversity. This demand is increasing and the need for high data rate and near real-time communications between submerged agents became of paramount importance. Among the needs for underwater communications, streaming video (e.g. for inspecting risers or hydrothermal vents) can be seen as the top challenge, which when solved will make all the other applications possible. Presently, the only reliable approach for underwater video streaming relies on wired connections or tethers (e.g. from ROVs to the surface) which presents severe operational constraints that makes acoustic links together with AUVs and sensor networks strongly appealing. Using new polymer-based acoustic transducers, which in very recent works have shown to have bandwidth and power efficiency much higher than the usual ceramics, this article proposes the development of a reprogrammable acoustic modem for operating in underwater communications with video streaming capabilities. The results have shown a maximum data-rate of 1Mbps with a simple modulation scheme such as OOK, at a distance of 20 m.
Resumo:
Tese de Doutoramento (Programa Doutoral em Engenharia Biomédica)