999 resultados para Under-qualification
Resumo:
Changing informational constraints of practice, such as when using ball projection machines, has been shown to significantly affect movement coordination of skilled cricketers. To date, there has been no similar research on movement responses of developing batters, an important issue since ball projection machines are used heavily in cricket development programmes. Timing and coordination of young cricketers (n = 12, age = 15.6 ± 0.7 years) were analyzed during the forward defensive and forward drive strokes when facing a bowling machine and bowler (both with a delivery velocity of 28.14 ± 0.56 m s−1). Significant group performance differences were observed between the practice task constraints, with earlier initiation of the backswing, front foot movement, downswing, and front foot placement when facing the bowler compared to the bowling machine. Peak height of the backswing was higher when facing the bowler, along with a significantly larger step length. Altering the informational constraints of practice caused major changes to the information–movement couplings of developing cricketers. Data from this study were interpreted to emanate from differences in available specifying variables under the distinct practice task constraints. Considered with previous findings, results confirmed the need to ensure representative batting task constraints in practice, cautioning against an over-reliance on ball projection machines in cricket development programmes.
Resumo:
Dispersion characteristics of respiratory droplets in indoor environments are of special interest in controlling transmission of airborne diseases. This study adopts an Eulerian method to investigate the spatial concentration distribution and temporal evolution of exhaled and sneezed/coughed droplets within the range of 1.0~10.0μm in an office room with three air distribution methods, i.e. mixing ventilation (MV), displacement ventilation (DV), and under-floor air distribution (UFAD). The diffusion, gravitational settling, and deposition mechanism of particulate matters are well accounted in the one-way coupling Eulerian approach. The simulation results find that exhaled droplets with diameters up to 10.0μm from normal respiration process are uniformly distributed in MV, while they are trapped in the breathing height by thermal stratifications in DV and UFAD, resulting in a high droplet concentration and a high exposure risk to other occupants. Sneezed/coughed droplets are diluted much slower in DV/UFAD than in MV. Low air speed in the breathing zone in DV/UFAD can lead to prolonged residence of droplets in the breathing zone.
Resumo:
The aims of this chapter are twofold. First, we show how experiments related to nonlinear dynamical systems theory can bring about insights on the interconnectedness of different information sources for action. These include the amount of information as emphasised in conventional models of cognition and action in sport and the nature of perceptual information typically emphasised in the ecological approach. The second aim was to show how, through examining the interconnectedness of these information sources, one can study the emergence of novel tactical solutions in sport; and design experiments where tactical/decisional creativity can be observed. Within this approach it is proposed that perceptual and affective information can be manipulated during practice so that the athlete's cognitive and action systems can be transposed to a meta-stable dynamical performance region where the creation of novel action information may reside.
Resumo:
Assessment frames the focus of this paper, which emerges from our collaborative research, Dancing Between Diversity and Consistency: Refining Assessment in Postgraduate Degrees in Dance, funded by the Australian Learning and Teaching Council (ALTC). We examine the attributes of danced ‘doctorateness’, giving special attention to those factors in the Australian environment, which may endow resilience to concepts of excellence, independent thinking and originality when kinaesthetic knowledge becomes pivotal to research. Have the small pool of examiners and relationships between academia and the professional artistic environment shaped these doctorates in a particular way? Can these perspectives illuminate and forge parameters by which to legitimate danced insight? These and related issues are interrogated giving voice to supervisors, research deans, candidates and industry professionals across Australia who participated in this research project.
Resumo:
Two experiments involving 87 undergraduates examined whether happiness produces increased performance on a physical task and tested whether self-efficacy mediated the results. When mood inductions covered the full range from happy to sad, mood influenced physical performance; however, evidence regarding self-efficacy was equivocal. Efficacy for the performed task was unaffected by mood, although it remained a good predictor of performance. Since mood altered efficacy for a nonperformed but more familiar task, inconsistent efficacy results could reflect task differences. Findings offer prospects for the use of mood inductions in practical sporting situations.
Issues in the Making of Ouster Orders Under the Domestic Violence (Family Protection) Act 1989 (Qld)
Resumo:
This article observes a paradox in the recent history of the Special Broadcasting Service. It is argued that, in contrast to the Australian Broadcasting Corporation, the role and general direction of SBS were not extensively debated as part of the ‘culture wars’ that occurred during the years of the Howard government. While that made SBS a less fraught space during that period, it may now be a factor in the comparative lack of support being given by the Rudd Labor government to SBS in comparison with the ABC, as some of the ‘special’ status of SBS has been blunted by its drift towards more mainstream programming and a mixed economy of commercial advertising, as well as government funding.
Resumo:
Furniture and appliance related injuries in children under 5 years of age accounts for an estimated 180 emergency presentations annually in Queensland. Injuries occur when children push or pull items over, climb and fall off furniture, or climb and tip the item over. Children under 2 years of age tend to injure themselves by pulling items over onto themselves Children over 2 years of age are more likely to be injured after climbing the item and either falling off or tipping the item over onto themselves. Tip over injuries (where the item falls over and injures the child) in children under 5 years of age account for an estimated 115 emergency presentations annually in Queensland. The item most commonly associated with a tip over injury is a television (with or without the cabinet) Prevention requires better design and selection of furniture with inherent stability coupled with mechanisms to install or fix less stable items
Resumo:
An estimated 200 Queensland children under 5 years of age are injured every year in incidents involving prams or strollers. The majority of injuries are due to falls from or falls with the pram or stroller Nineteen children were identified as having been caught in the pram or stroller mechanism (13 sustained finger injuries). Stairs and escalators were a factor in nearly 10 percent of pram or stroller fall injuries, with children being tipped out of the pram or stroller, or rolling down the stairs in the device. Roll away injuries accounted for eight percent of all pram or stroller fall injuries (some also involving stairs) Roll away injuries could be prevented by a default brake system similar to airport trolleys. Pram or stroller failure was identified in 2% of injuries
Resumo:
PURPOSE. This study was conducted to determine the magnitude of pupil center shift between the illumination conditions provided by corneal topography measurement (photopic illuminance) and by Hartmann-Shack aberrometry (mesopic illuminance) and to investigate the importance of this shift when calculating corneal aberrations and for the success of wavefront-guided surgical procedures. METHODS. Sixty-two subjects with emmetropia underwent corneal topography and Hartmann-Shack aberrometry. Corneal limbus and pupil edges were detected, and the differences between their respective centers were determined for both procedures. Corneal aberrations were calculated using the pupil centers for corneal topography and for Hartmann-Shack aberrometry. Bland-Altmann plots and paired t-tests were used to analyze the differences between corneal aberrations referenced to the two pupil centers. RESULTS. The mean magnitude (modulus) of the displacement of the pupil with the change of the illumination conditions was 0.21 ± 0.11 mm. The effect of this pupillary shift was manifest for coma corneal aberrations for 5-mm pupils, but the two sets of aberrations calculated with the two pupil positions were not significantly different. Sixty-eight percent of the population had differences in coma smaller than 0.05 µm, and only 4% had differences larger than 0.1 µm. Pupil displacement was not large enough to significantly affect other higher-order Zernike modes. CONCLUSIONS. Estimated corneal aberrations changed slightly between photopic and mesopic illumination conditions given by corneal topography and Hartmann-Shack aberrometry. However, this systematic pupil shift, according to the published tolerances ranges, is enough to deteriorate the optical quality below the theoretically predicted diffraction limit of wavefront-guided corneal surgery.
Resumo:
Nonlinearity, uncertainty and subjectivity are the three predominant characteristics of contractors prequalification which cause the process more of an art than a scientific evaluation. A fuzzy neural network (FNN) model, amalgamating both the fuzzy set and neural network theories, has been developed aiming to improve the objectiveness of contractor prequalification. Through the FNN theory, the fuzzy rules as used by the prequalifiers can be identified and the corresponding membership functions can be transformed. Eighty-five cases with detailed decision criteria and rules for prequalifying Hong Kong civil engineering contractors were collected. These cases were used for training (calibrating) and testing the FNN model. The performance of the FNN model was compared with the original results produced by the prequalifiers and those generated by the general feedforward neural network (GFNN, i.e. a crisp neural network) approach. Contractor’s ranking orders, the model efficiency (R2) and the mean absolute percentage error (MAPE) were examined during the testing phase. These results indicate the applicability of the neural network approach for contractor prequalification and the benefits of the FNN model over the GFNN model. The FNN is a practical approach for modelling contractor prequalification.
Resumo:
The selection criteria for contractor pre-qualification are characterized by the co-existence of both quantitative and qualitative data. The qualitative data is non-linear, uncertain and imprecise. An ideal decision support system for contractor pre-qualification should have the ability of handling both quantitative and qualitative data, and of mapping the complicated nonlinear relationship of the selection criteria, such that rational and consistent decisions can be made. In this research paper, an artificial neural network model was developed to assist public clients identifying suitable contractors for tendering. The pre-qualification criteria (variables) were identified for the model. One hundred and twelve real pre-qualification cases were collected from civil engineering projects in Hong Kong, and eighty-eight hypothetical pre-qualification cases were also generated according to the “If-then” rules used by professionals in the pre-qualification process. The results of the analysis totally comply with current practice (public developers in Hong Kong). Each pre-qualification case consisted of input ratings for candidate contractors’ attributes and their corresponding pre-qualification decisions. The training of the neural network model was accomplished by using the developed program, in which a conjugate gradient descent algorithm was incorporated for improving the learning performance of the network. Cross-validation was applied to estimate the generalization errors based on the “re-sampling” of training pairs. The case studies show that the artificial neural network model is suitable for mapping the complicated nonlinear relationship between contractors’ attributes and their corresponding pre-qualification (disqualification) decisions. The artificial neural network model can be concluded as an ideal alternative for performing the contractor pre-qualification task.
Resumo:
Multi-storey buildings are highly vulnerable to terrorist bombing attacks in various parts of the world. Large numbers of casualties and extensive property damage result not only from blast overpressure, but also from the failing of structural components. Understanding the blast response and damage consequences of reinforced concrete (RC) building frames is therefore important when assessing multi-storey buildings designed to resist normal gravity loads. However, limited research has been conducted to identify the blast response and damage of RC frames in order to assess the vulnerability of entire buildings. This paper discusses the blast response and evaluation of damage of three-dimension (3D) RC rigid frame under potential blast loads scenarios. The explicit finite element modelling and analysis under time history blast pressure loads were carried out by LS DYNA code. Complete 3D RC frame was developed with relevant reinforcement details and material models with strain rate effect. Idealised triangular blast pressures calculated from standard manuals are applied on the front face of the model in the present investigation. The analysis results show the blast response, as displacements and material yielding of the structural elements in the RC frame. The level of damage is evaluated and classified according to the selected load case scenarios. Residual load carrying capacities are evaluated and level of damage was presented by the defined damage indices. This information is necessary to determine the vulnerability of existing multi-storey buildings with RC frames and to identify the level of damage under typical external explosion environments. It also provides basic guidance to the design of new buildings to resist blast loads.