973 resultados para Uncertainty Management


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In recent years, global supply chains have increasingly suffered from reliability issues due to various external and difficult to-manage events. The following paper aims to build an integrated approach for the design of a Supply Chain under the risk of disruption and demand fluctuation. The study is divided in two parts: a mathematical optimization model, to identify the optimal design and assignments customer-facility, and a discrete-events simulation of the resulting network. The first one describes a model in which plant location decisions are influenced by variables such as distance to customers, investments needed to open plants and centralization phenomena that help contain the risk of demand variability (Risk Pooling). The entire model has been built with a proactive approach to manage the risk of disruptions assigning to each customer two types of open facilities: one that will serve it under normal conditions and a back-up facility, which comes into operation when the main facility has failed. The study is conducted on a relatively small number of instances due to the computational complexity, a matheuristic approach can be found in part A of the paper to evaluate the problem with a larger set of players. Once the network is built, a discrete events Supply Chain simulation (SCS) has been implemented to analyze the stock flow within the facilities warehouses, the actual impact of disruptions and the role of the back-up facilities which suffer a great stress on their inventory due to a large increase in demand caused by the disruptions. Therefore, simulation follows a reactive approach, in which customers are redistributed among facilities according to the interruptions that may occur in the system and to the assignments deriving from the design model. Lastly, the most important results of the study will be reported, analyzing the role of lead time in a reactive approach for the occurrence of disruptions and comparing the two models in terms of costs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We are working on the confluence of knowledge management, organizational memory and emergent knowledge with the lens of complex adaptive systems. In order to be fundamentally sustainable organizations search for an adaptive need for managing ambidexterity of day-to-day work and innovation. An organization is an entity of a systemic nature, composed of groups of people who interact to achieve common objectives, making it necessary to capture, store and share interactions knowledge with the organization, this knowledge can be generated in intra-organizational or inter-organizational level. The organizations have organizational memory of knowledge of supported on the Information technology and systems. Each organization, especially in times of uncertainty and radical changes, to meet the demands of the environment, needs timely and sized knowledge on the basis of tacit and explicit. This sizing is a learning process resulting from the interaction that emerges from the relationship between the tacit and explicit knowledge and which we are framing within an approach of Complex Adaptive Systems. The use of complex adaptive systems for building the emerging interdependent relationship, will produce emergent knowledge that will improve the organization unique developing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Short-term risk management is highly dependent on long-term contractual decisions previously established; risk aversion factor of the agent and short-term price forecast accuracy. Trying to give answers to that problem, this paper provides a different approach for short-term risk management on electricity markets. Based on long-term contractual decisions and making use of a price range forecast method developed by the authors, the short-term risk management tool presented here has as main concern to find the optimal spot market strategies that a producer should have for a specific day in function of his risk aversion factor, with the objective to maximize the profits and simultaneously to practice the hedge against price market volatility. Due to the complexity of the optimization problem, the authors make use of Particle Swarm Optimization (PSO) to find the optimal solution. Results from realistic data, namely from OMEL electricity market, are presented and discussed in detail.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências do Mar, especialidade em Ecologia Marinha.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de Mestrado apresentado ao Instituto de Contabilidade e Administração do Porto para a obtenção do grau de Mestre em Auditoria, sob orientação do Mestre Fernando Teixeira Pinto

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia e Gestão Industrial

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A foremost dispute that persists on the contemporary world’s agenda is change. The on-going social/technological/economic changes create a competitive and challenging environment for companies to endure. To benefit from these changes, world economies partially depend on emerging Small and Medium Enterprises (SMEs) and their adaptability skills, and subsequently the development of an integrated capability to innovate has become the prime strategy for most of SMEs to subsist and grow. However, innovation and change are always somewhat bonded to an inherent risk development, which subsequently brings on the necessity of a revision of risk management approaches in innovative processes, whose importance SMEs tend to disregard. Additionally, little efforts have been made to improve and create empirical models, metrics and tools to assist SMEs managing latent risks in their innovative projects. This work seeks to present and discuss a solution to support SMEs in engaging on systematic risk management practices, which consists on an integrated risk assessment and response support web-based tool - Spotrisk® - designed for SMEs. On the other hand, an inherent subjectivity is linked with risk management and identification processes, due to uncertainty trait of its nature, for each individual perceives situations according to his own idiosyncrasy, which brings complications in normalizing risk profiles and procedures. This essay aims to bring insights concerning the support in decision-making processes under uncertainty, by addressing issues related with the risk behavior character among individuals. To address such issues, subjects of neuroscience or psychology are explored and models to identify such character are proposed, as well as models to improve presented tool. This work attempts to go beyond the restrictive aim of endeavoring on technical improvement dissertation, and in embraces an exploratory conceptualization concerning micro, small and medium businesses’ traits regarding risk characters and project risk assessment tools.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A few decades ago, global management consulting was considered to be one of the most attractive industries due to its abnormal high profit margins and above-average growth rates. However, after the dot-com bubble in 2000 and the last global financial crisis, firms folded and growth rates declined sharply. In an attempt to overcome the uncertainty and information volatility, internationalization is commonly cited as a good strategy. WMC, a Portuguese SME founded in 2012, has now decided to expand its management consulting services. Therefore, a scoring model was created to assess selected European countries’ attractiveness taking into consideration macro and microeconomic data. Results show that Spain is the best option at the moment, mainly because it is where the company has the larger number of projects already developed and is more likely to leverage its network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is a difficult task to avoid the “smart systems” topic when discussing smart prevention and, similarly, it is a difficult task to address smart systems without focusing their ability to learn. Following the same line of thought, in the current reality, it seems a Herculean task (or an irreparable omission) to approach the topic of certified occupational health and safety management systems (OHSMS) without discussing the integrated management systems (IMSs). The available data suggest that seldom are the OHSMS operating as the single management system (MS) in a company so, any statement concerning OHSMS should mainly be interpreted from an integrated perspective. A major distinction between generic systems can be drawn between those that learn, i.e., those systems that have “memory” and those that have not. These former systems are often depicted as adaptive since they take into account past events to deal with novel, similar and future events modifying their structure to enable success in its environment. Often, these systems, present a nonlinear behavior and a huge uncertainty related to the forecasting of some events. This paper seeks to portray, for the first time as we were able to find out, the IMSs as complex adaptive systems (CASs) by listing their properties and dissecting the features that enable them to evolve and self-organize in order to, holistically, fulfil the requirements from different stakeholders and thus thrive by assuring the successful sustainability of a company. Based on the revision of literature carried out, this is the first time that IMSs are pointed out as CASs which may develop fruitful synergies both for the MSs and for CASs communities. By performing a thorough revision of literature and based on some concepts embedded in the “DNA” of the subsystems implementation standards it is intended, specifically, to identify, determine and discuss the properties of a generic IMS that should be considered to classify it as a CAS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study explores the perception of risk and the level of risk management implementation in the renewable sector. Risk management is emerging as a key issue due to the loss of confidence amongst banks, causing the attainment of financing to be difficult over the next few years. To attract financing, there is a fundamental requirement to manage risk in a way that minimizes the probability of a negative financial impact on the project. Miller and Lessard (2001) argue that successful projects are not selected but shaped with risk resolution in mind. Rather than evaluating projects at the outset based on projections of the full set of benefits, costs and risks over their lifetime, successful developers start with project ideas that have the potential of becoming viable. Therefore, this study bridges the gap that exists within the renewable sector in relation to risk management literature. This study succeeds through a detailed comparative case study analysis where two developers and two financiers were questioned through qualitative semi-structured interviews on the concept of risk management and its level implementation within the industry. It is believed that the growth in financed renewable energy projects depends on the adequate design and implementation of risk management to mitigate inherent project risks. However, this study revealed that are certain types of developers in existence within the renewable sector, which underestimate the magnitude of risk and view the development of projects as a ‘money racket’. Therefore, it can be concluded that perception of risk will also differ, causing risk and uncertainty to vary from project to project, resulting in investment reluctance to be associated with certain projects. The study originality lies in how it demonstrates to developers the concept of risk management, outlining the simplicity and benefits of implementing it in project development. Finally, this study contributes to the knowledge by enhancing the awareness and understanding of the presence and nature of risk in a RE project environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Species distribution modelling is used increasingly in both applied and theoretical research to predict how species are distributed and to understand attributes of species' environmental requirements. In species distribution modelling, various statistical methods are used that combine species occurrence data with environmental spatial data layers to predict the suitability of any site for that species. While the number of data sharing initiatives involving species' occurrences in the scientific community has increased dramatically over the past few years, various data quality and methodological concerns related to using these data for species distribution modelling have not been addressed adequately. 2. We evaluated how uncertainty in georeferences and associated locational error in occurrences influence species distribution modelling using two treatments: (1) a control treatment where models were calibrated with original, accurate data and (2) an error treatment where data were first degraded spatially to simulate locational error. To incorporate error into the coordinates, we moved each coordinate with a random number drawn from the normal distribution with a mean of zero and a standard deviation of 5 km. We evaluated the influence of error on the performance of 10 commonly used distributional modelling techniques applied to 40 species in four distinct geographical regions. 3. Locational error in occurrences reduced model performance in three of these regions; relatively accurate predictions of species distributions were possible for most species, even with degraded occurrences. Two species distribution modelling techniques, boosted regression trees and maximum entropy, were the best performing models in the face of locational errors. The results obtained with boosted regression trees were only slightly degraded by errors in location, and the results obtained with the maximum entropy approach were not affected by such errors. 4. Synthesis and applications. To use the vast array of occurrence data that exists currently for research and management relating to the geographical ranges of species, modellers need to know the influence of locational error on model quality and whether some modelling techniques are particularly robust to error. We show that certain modelling techniques are particularly robust to a moderate level of locational error and that useful predictions of species distributions can be made even when occurrence data include some error.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Managing fisheries resources to maintain healthy ecosystems is one of the main goals of the ecosystem approach to fisheries (EAF). While a number of international treaties call for the implementation of EAF, there are still gaps in the underlying methodology. One aspect that has received substantial scientific attention recently is fisheries-induced evolution (FIE). Increasing evidence indicates that intensive fishing has the potential to exert strong directional selection on life-history traits, behaviour, physiology, and morphology of exploited fish. Of particular concern is that reversing evolutionary responses to fishing can be much more difficult than reversing demographic or phenotypically plastic responses. Furthermore, like climate change, multiple agents cause FIE, with effects accumulating over time. Consequently, FIE may alter the utility derived from fish stocks, which in turn can modify the monetary value living aquatic resources provide to society. Quantifying and predicting the evolutionary effects of fishing is therefore important for both ecological and economic reasons. An important reason this is not happening is the lack of an appropriate assessment framework. We therefore describe the evolutionary impact assessment (EvoIA) as a structured approach for assessing the evolutionary consequences of fishing and evaluating the predicted evolutionary outcomes of alternative management options. EvoIA can contribute to EAF by clarifying how evolution may alter stock properties and ecological relations, support the precautionary approach to fisheries management by addressing a previously overlooked source of uncertainty and risk, and thus contribute to sustainable fisheries.