942 resultados para Ultrasonic NDE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sodium p-nitrophenolate dihydrate single crystals possess excellent nonlinear optical properties such that they can be used for optical second-harmonic generation. It belongs to the orthorhombic system with the space group Ima2. Slow evaporation or slow cooling techniques can be used to grow good optical quality single crystals from supersaturated solution. All the nine elastic constants of this crystal have been measured using an ultrasonic technique. Samples for measurements have been cut along desired crystallographic axes and the pulse echo overlap technique has been used to measure longitudinal and shear ultrasonic wave velocities along appropriate symmetry directions in the crystal. The McSkimin Delta t criterion has been applied to determine the round trip travel time accurately, from which the nine elastic constants have been evaluated. Temperature variation of selected elastic constants in a limited range have also been measured and reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ultrasonic degradation of two dyes, Rhodamine B (C28H31ClN2O3) and Rhodamine Blue (C28H32N2O3), were studied in the absence of catalyst and in the presence of two catalysts (combustion-synthesized anatase TiO2 and commercial Degussa P-25 TiO2. The rate of degradation of catalyzed reaction was higher than that obtained with in the absence of the catalysts. Among the catalysts, combustion-synthesized anatase TiO2 degraded the dyes faster when compared to the degradation with commercial Degussa P-25 catalyst. A Langmuir-Hinshelwood kinetic model was developed and the kinetic rate parameters were determined. The effect of other operating parameters, such as initial concentration, pH, temperature, and power intensity, was also investigated. The degradation rate increased with decreasing pH, increasing temperature, and higher intensity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, an ultrasonic wave propagation in graphene sheet is studied using nonlocal elasticity theory incorporating small scale effects. The graphene sheet is modeled as an isotropic plate of one-atom thick. For this model, the nonlocal governing differential equations of motion are derived from the minimization of the total potential energy of the entire system. An ultrasonic type of wave propagation model is also derived for the graphene sheet. The nonlocal scale parameter introduces certain band gap region in in-plane and flexural wave modes where no wave propagation occurs. This is manifested in the wavenumber plots as the region where the wavenumber tends to infinite or wave speed tends to zero. The frequency at which this phenomenon occurs is called the escape frequency. The explicit expressions for cutoff frequencies and escape frequencies are derived. The escape frequencies are mainly introduced because of the nonlocal elasticity. Obviously these frequencies are function of nonlocal scaling parameter. It has also been obtained that these frequencies are independent of y-directional wavenumber. It means that for any type of nanostructure, the escape frequencies are purely a function of nonlocal scaling parameter only. It is also independent of the geometry of the structure. It has been found that the cutoff frequencies are function of nonlocal scaling parameter (e(0)a) and the y-directional wavenumber (k(y)). For a given nanostructure, nonlocal small scale coefficient can be obtained by matching the results from molecular dynamics (MD) simulations and the nonlocal elasticity calculations. At that value of the nonlocal scale coefficient, the waves will propagate in the nanostructure at that cut-off frequency. In the present paper, different values of e(o)a are used. One can get the exact e(0)a for a given graphene sheet by matching the MD simulation results of graphene with the results presented in this paper. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ultrasonic degradation of two dyes, Rhodamine B (C28H31ClN2O3) and Rhodamine Blue (C28H32N2O3), were studied in the absence of catalyst and in the presence of two catalysts (combustion-synthesized anatase TiO2 and commercial Degussa P-25 TiO2. The rate of degradation of catalyzed reaction was higher than that obtained with in the absence of the catalysts. Among the catalysts, combustion-synthesized anatase TiO2 degraded the dyes faster when compared to the degradation with commercial Degussa P-25 catalyst. A Langmuir-Hinshelwood kinetic model was developed and the kinetic rate parameters were determined. The effect of other operating parameters, such as initial concentration, pH, temperature, and power intensity, was also investigated. The degradation rate increased with decreasing pH, increasing temperature, and higher intensity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The active structural component of a capacitive micromachined ultrasonic transducer (CMUT) is the top plate which vibrates under the influence of a time-varying electrostatic force thereby producing ultrasound waves of the desired frequency in the surrounding medium. Analysis of MEMS devices which rely on electrostatic actuation is complicated due to the fact that the structural deformations alter the electrostatic forces, which redistribute and modify the applied loads. Hence, it becomes imperative to consider the electrostatics-structure coupling aspect in the design of these devices. This paper presents an approximate analytical solution for the static deflection of a thin, clamped circular plate caused by electrostatic forces which are inherently nonlinear. Traditionally, finite element simulations using some commercial software such as ANSYS are employed to determine the structural deflections caused by electrostatic forces. Since the structural deformation alters the electrostatic field, a coupled-field simulation is required wherein the electrostatic mesh is continuously updated to coincide with the deflection of the structure. Such simulations are extremely time consuming, in addition to being nontransparent and somewhat hard to implement. We employ the classical thin-plate theory which is adequate when the ratio of the diameter to thickness of the plate is very large, a situation commonly prevalent in many MEMS devices, especially the CMUTs. We solve the thin-plate electrostatic-elastic equation using the Galerkin-weighted residual technique, under the assumption that the deflections are small in comparison to the thickness of the plate. The evaluation of the electrostatic force between the two plates is simplified due to the fact that the electrostatic gap is much smaller than the lateral dimensions of the device. The results obtained are compared to those found from ANSYS simulations and an excellent agreement is observed between the two. The pull-in voltage predicted by our model is close to the value predicted by ANSYS simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large-area PVDF thin films have been prepared and characterized for quasi-static and high frequency dynamic strain sensing applications. These films are prepared using hot press method and the piezoelectric phase (beta-phase) has been achieved by thermo-mechanical treatment and poling under DC field. The fabricated films have been characterized for quasi-static strain sensing and the linear strain-voltage relationship obtained is promising. In order to evaluate the ultrasonic sensing properties, a PZT wafer has been used to launch Lamb waves in a metal beam on which the PVDF film sensor is bonded at a distance. The voltage signals obtained from the PVDF films have been compared with another PZT wafer sensor placed on the opposite surface of the beam as a reference signal. Due to higher stiffness and higher thickness of the PZT wafer sensors, certain resonance patterns significantly degrade the sensor sensitivity curves. Whereas, the present results show that the large-area PVDF sensors can be superior with the signal amplitude comparable to that of PZT sensors and with no resonance-induced effect, which is due to low mechanical impedance, smaller thickness and larger area of the PVDF film. Moreover, the developed PVDF sensors are able to capture both A(0) and S-0 modes of Lamb wave, whereas the PZT sensors captures only A(0) mode in the same scale of voltage output. This shows promises in using large-area PVDF films with various surface patterns on structures for distributed sensing and structural health monitoring under quasi-static, vibration and ultrasonic situations. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the work related to characterisation of an ultrasonic transducer fabricated in the laboratory. The response of the medium to the ultrasonic wave was obtained by converting the time domain signal to frequency domain, using the FFT algorithm. Cross-correlation technique was adopted to increase the S/N ratio in the raw time domain signal and subsequently, to determine the ultrasonic velocity in the medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CZTS (Copper Zinc Tin Sulphide) is a wide band gap quartnery chalcopyrite which has a band gap of about 1.45 eV and an absorption coefficient of 10(4) cm(-1); thus making it an ideal material to be used as an absorber layer in solar cells. Ultrasonic Spray Pyrolysis is a deposition technique, where the solution is atomized ultrasonically, thereby giving a fine mist having a narrow size distribution which can be used for uniform coatings on substrates. An Ultrasonic Spray Pyrolysis equipment was developed and CZTS absorber layers were successfully grown with this technique on soda lime glass substrates using aqueous solutions. Substrate temperatures ranging from 523 K to 723 K were used to deposit the CZTS layers and these films were characterized using SEM, EDAX and XRD. It was observed that the film crystallized in the kesterite structure and the best crystallites were obtained at 613 K. It was observed that the grain size progressively increased with temperature. The optical band gap of the material was obtained as 1.54 eV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Study of fatigue phenomenon in composites requires a dynamic tool which can detect and identify different failure mechanisms involved. The tool should also be capable of monitoring the cumulative damage progression on-line. Acoustic Emission Technique has been utilized in the experimental investigations on unidirectional carbon fiber reinforced plastic (CFRP) composite specimens subjected to tension-tension fatigue. Amplitude as well as frequency distribution of Acoustic Emission (AE) signals have been studied to detect and characterize different failure mechanisms. For a quantitative measure of degradation of the material with fatigue load cycles, reduction in stiffness of the specimen has been measured intermittently. Ultrasonic imaging could give the information on the changes in the interior status of the material at different stages of fatigue life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work deals with an ultrasonic type of wave propagation characteristics of monolayer graphene on silicon (Si) substrate. An atomistic model of a hybrid lattice involving a hexagonal lattice of graphene and surface atoms of diamond lattice of Si is developed to identify the carbon-silicon bond stiffness. Properties of this hybrid lattice model is then mapped into a nonlocal continuum framework. Equivalent force constant due to Si substrate is obtained by minimizing the total potential energy of the system. For this equilibrium configuration, the nonlocal governing equations are derived to analyze the ultrasonic wave dispersion based on spectral analysis. From the present analysis we show that the silicon substrate affects only the flexural wave mode. The frequency band gap of flexural mode is also significantly affected by this substrate. The results also show that, the silicon substrate adds cushioning effect to the graphene and it makes the graphene more stable. The analysis also show that the frequency bang gap relations of in-plane (longitudinal and lateral) and out-of-plane (flexural) wave modes depends not only on the y-direction wavenumber but also on nonlocal scaling parameter. In the nonlocal analysis, at higher values of the y-directional wavenumber, a decrease in the frequency band gap is observed for all the three fundamental wave modes in the graphene-silicon system. The atoms movement in the graphene due to the wave propagation are also captured for all the tree fundamental wave modes. The results presented in this work are qualitatively different from those obtained based on the local analysis and thus, are important for the development of graphene based nanodevices such as strain sensor, mass and pressure sensors, atomic dust detectors and enhancer of surface image resolution that make use of the ultrasonic wave dispersion properties of graphene. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prop-2-ynyloxy carbonyl function (POC) which can be cleaved under mild and neutral conditions in the presence of benzyltriethylammonium tetrathiomolybdate has been developed as a new protecting group for amines. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasonic degradation of poly(methyl methacrylate) (PMMA) was carried out in several solvents and some mixtures of solvents. The time evolution of molecular weight distribution (MWD), determined by gel permeation chromatography, is analysed by continuous distribution kinetics. The rate coefficients for polymer degradation are determined for each solvent. The variation of rate coefficients is correlated with the vapour pressure of the solvent, kinematic viscosity of the solution and solvent-polymer interaction parameters. The vapour pressure and the kinematic viscosity of the solution are found to be more critical than other parameters (such as the Huggins and Flory-Huggins constants) in determining the degradation rates. (C) 2001 Society of Chemical Industry.