829 resultados para Ubc9 and antiviral activity
Resumo:
Flow induced shear stress plays an important role in regulating cell growth and distribution in scaffolds. This study sought to correlate wall shear stress and chondrocytes activity for engineering design of micro-porous osteochondral grafts based on the hypothesis that it is possible to capture and discriminate between the transmitted force and cell response at the inner irregularities. Unlike common tissue engineering therapies with perfusion bioreactors in which flow-mediated stress is the controlling parameter, this work assigned the associated stress as a function of porosity to influence in vitro proliferation of chondrocytes. D-optimality criterion was used to accommodate three pore characteristics for appraisal in a mixed level fractional design of experiment (DOE); namely, pore size (4 levels), distribution pattern (2 levels) and density (3 levels). Micro-porous scaffolds (n=12) were fabricated according to the DOE using rapid prototyping of an acrylic-based bio-photopolymer. Computational fluid dynamics (CFD) models were created correspondingly and used on an idealized boundary condition with a Newtonian fluid domain to simulate the dynamic microenvironment inside the pores. In vitro condition was reproduced for the 3D printed constructs seeded by high pellet densities of human chondrocytes and cultured for 72 hours. The results showed that cell proliferation was significantly different in the constructs (p<0.05). Inlet fluid velocity of 3×10-2mms-1 and average shear stress of 5.65×10-2 Pa corresponded with increased cell proliferation for scaffolds with smaller pores in hexagonal pattern and lower densities. Although the analytical solution of a Poiseuille flow inside the pores was found insufficient for the description of the flow profile probably due to the outside flow induced turbulence, it showed that the shear stress would increase with cell growth and decrease with pore size. This correlation demonstrated the basis for determining the relation between the induced stress and chondrocyte activity to optimize microfabrication of engineered cartilaginous constructs.
Resumo:
There is now a large body of literature that supports the protective role of physical activity for both physical and psychological health. Sedentary behaviour was previously considered the functional opposite of physical activity, but 10 years ago, Owen and colleagues highlighted the need to study physical activity and sedentary behaviour as two distinct modes of behaviour that can independently influence health [1]. Since then, there has been growing evidence that participation in sedentary behaviours such as television viewing, computer use and sitting at work are associated with higher risk of chronic disease outcomes (type 2 diabetes, obesity), and leisure-time sitting has recently been associated with increased mortality [2]. Growing research points to the possible synergistic effects of physical activity and sedentary behaviours in contributing to health outcomes
Resumo:
Purpose: To objectively assess daily light exposure and physical activity levels in myopic and emmetropic children. Methods: One hundred and two children (41 myopes and 61 emmetropes) aged 10 to 15 years old had simultaneous objective measures of ambient light exposure and physical activity collected over a 2 week period during school term, using a wrist worn actigraphy device (Actiwatch-2). Measures of visible light illuminance and physical activity were captured every 30 seconds, 24 hours a day over this period. Mean hourly light exposure and physical activity for weekdays and weekends were examined. To ensure that seasonal variations didn’t confound comparisons, the light and activity data of the 41 myopes, was compared with 41 age and gender matched emmetropes who wore the Actiwatch over the same two week period. Results: Mean light exposure and physical activity for all 101 children with valid data exhibited significant changes with time of day and day of the week (p<0.0001). On average greater daily light exposure occurred on weekends compared to weekdays (p<0.05), and greater physical activity occurred on weekdays compared to weekends (p<0.01). Myopic children (n = 41, mean daily light exposure 915 ± 519 lux) exhibited significantly lower average light exposure compared to 41 age and gender matched emmetropic children (1272 ± 625 lux, p<0.01). The amount of daily time spent in bright light conditions (>1000 lux) was also significantly greater in emmetropes (127 ± 51 minutes) compared to myopes (91 ± 44 minutes, p<0.001). No significant differences were found between the average daily physical activity levels of myopes and emmetropes (p>0.05). Conclusions: Myopic children exhibit significantly lower daily light exposure, but no significant difference in physical activity compared to emmetropic children. This suggests the important factor involved in documented associations between myopia and outdoor activity is likely exposure to bright outdoor light rather than greater physical activity.
Resumo:
Study Design Cross-sectional study. Objective To explore aspects of cervical musculoskeletal function in female office workers with neck pain. Summary of Background Data Evidence of physical characteristics that differentiate computer workers with and without neck pain is sparse. Patients with chronic neck pain demonstrate reduced motion and altered patterns of muscle control in the cervical flexor and upper trapezius (UT) muscles during specific tasks. Understanding cervical musculoskeletal function in office workers will better direct intervention and prevention strategies. Methods Measures included neck range of motion; superficial neck flexor muscle activity during a clinical test, the craniocerivcal flexion test; and a motor task, a unilateral muscle coordination task, to assess the activity of both the anterior and posterior neck muscles. Office workers with and without neck pain were formed into 3 groups based on their scores on the Neck Disability Index. Nonworking women without neck pain formed the control group. Surface electromyographic activity was recorded bilaterally from the sternocleidomastoid, anterior scalene (AS), cervical extensor (CE) and UT muscles. Results Workers with neck pain had reduced rotation range and increased activity of the superficial cervical flexors during the craniocervical flexion test. During the coordination task, workers with pain demonstrated greater activity in the CE muscles bilaterally. On completion of the task, the UT and dominant CE and AS muscles demonstrated an inability to relax in workers with pain. In general, there was a linear relationship between the workers’ self-reported levels of pain and disability and the movement and muscle changes. Conclusion These results are consistent with those found in other cervical musculoskeletal disorders and may represent an altered muscle recruitment strategy to stabilize the head and neck. An exercise program including motor reeducation may assist in the management of neck pain in office workers.
Resumo:
Design process phases of development, evaluation and implementation were used to create a garment to simultaneously collect reliable data of speech production and intensity of movement of toddlers (18-36 months). A series of prototypes were developed and evaluated that housed accelerometer-based motion sensors and a digital transmitter with microphone. The approved test garment was a top constructed from loop-faced fabric with interior pockets to house devices. Extended side panels allowed for sizing. In total, 56 toddlers (28 male; 28 female; 16-36 months of age) participated in the study providing pilot and baseline data. The test garment was effective in collecting data as evaluated for accuracy and reliability using ANOVA for accelerometer data, transcription of video for type of movement, and number and length of utterances for speech production. The data collection garment has been implemented in various studies across disciplines.
Resumo:
Background Family child care homes (FCCHs) are the second-largest provider of nonrelative care in the U.S. However, despite providing care for nearly 1.9 million children aged <5 years, little is known about the nutrition and physical activity practices of FCCHs. Purpose To address this gap, this study aims to describe policies and practices related to nutrition and physical activity in a representative sample of FCCHs. Methods A stratified random sample of registered FCCHs operating in Kansas (N=297) completed the Nutrition and Physical Activity Self Assessment for Child Care (NAPSACC) instrument. Prevalence estimates and 95% CIs for meeting or exceeding accepted child care standards were calculated using SAS PROC SURVEYFREQ. Results Most providers either met or exceeded child care standards related to serving fruit and vegetables and provision of daily physical activity. Very few providers reported serving fried meats or vegetables or unhealthy snack foods on a regular basis. Areas of concern included infrequent servings of low-fat milk, frequent use of unhealthy foods for celebrations, widespread use of TV and video games throughout the day, restricting physical activity for children who misbehave, and lack of appropriate indoor spaces for physical activity. Only a small percentage of providers reported receiving regular training in nutrition or physical activity. Relatively few providers had written guidelines on nutrition or physical activity. Conclusions Some strengths were exhibited by FCCHs, but substantial weaknesses were shown with respect to meeting established child care standards for nutrition and physical activity. Interventions to promote healthy eating and regular physical activity in FCCHs are thus warranted.
Resumo:
Background Family child care homes (FCCHs) provide child care to 1.9 million children in the U.S., but many do not meet established child care standards for healthy eating and physical activity. Purpose To determine the effects of a community-based train-the-trainer intervention on FCCHs policies and practices related to healthy eating and physical activity. Design Quasi-experimental design with replication in three independent cohorts of FCCHs. Setting/participants Registered FCCHs from 15 counties across Kansas participated in the Healthy Kansas Kids (HKK) program. Resource and referral agencies (RRAs) in each county recruited and enrolled between five and 15 child care providers in their service delivery area to participate in the program. The number of registered FCCHs participating in HKK in Years 1 (2006-2007); 2 (2007-2008); and 3 (2008-2009) of the program were 85, 64, and 87, respectively. A stratified random sample of registered FCCHs operating in Kansas (n=297) served as a normative comparison group. Interventions Child care trainers from each RRA completed a series of train-the-trainer workshops related to promotion of healthy eating and physical activity. FCCHs were subsequently guided through a four-step iterative process consisting of (1) self-evaluation; (2) goal setting; (3) developing an action plan; and (4) evaluating progress toward meeting goals. FCCHs also received U. S. Department of Agriculture resources related to healthy eating and physical activity. Main outcome measures Nutrition and Physical Activity Self-Assessment for Child Care (NAP SACC) self-assessment instrument (NAP SACC-SA). Analyses of outcome measures were conducted between 2008 and 2010. Results Healthy Kansas Kids FCCHs exhibited significant improvements in healthy eating (Delta=6.9%-7.1%) and physical activity (Delta=15.4%-19.2%) scores (p<0.05). Within each cohort, pre-intervention scores were not significantly different from the state average, whereas post-intervention scores were significantly higher than the state average. Conclusions Community-based train-the-trainer interventions to promote healthy eating and physical activity in FCCHs are feasible, sustainable, and effective.
Resumo:
This thesis by publication included seven manuscripts that advanced contemporary understanding of the association between physical activity and wellness among adolescents. The findings suggested that due to potential interrelatedness between various aspects of wellness, changes in physical activity may also influence co-existing wellness domains; highlighting the potential for physical activity interventions to have a broad range of benefits among youth. These findings also added to the body of literature supporting the potential inclusion of physical activity as a component within multifaceted youth wellness programs. Findings reported in this thesis have implications for those seeking to initiate youth wellness interventions.
Resumo:
In recent years a compelling body of knowledge has been accumulated to support the belief that physical activity and dietary behaviors carry important health consequences for young people. It has long been known that adequate nutrition and physical activity are essential for normal growth and development [1]. Recently, however, clear evidence has emerged that diet and physical activity during childhood and adolescence also affect an array of physiological factors associated with risk for developing chronic diseases; these factors include body composition (e.g., adiposity), blood lipid concentrations, blood pressure, and bone mineral density It also appears that physical activity and dietary behaviors and the physiological outcomes associated with them often track from childhood and adolescence into adulthood. Thus, risky health behaviors adopted early in life may negatively influence health in adulthood by having both a short-term effect on physiological risk factors and a long-term impact on health behavior.
Resumo:
Plasmonic gold nano-assemblies that self-assemble with the aid of linking molecules or polymers have the potential to yield controlled hierarchies of morphologies and consequently result in materials with tailored optical (e.g. localized surface plasmon resonances (LSPR)) and spectroscopic properties (e.g. surface enhanced Raman scattering (SERS)). Molecular linkers that are structurally well-defined are promising for forming hybrid nano-assemblies which are stable in aqueous solution and are increasingly finding application in nanomedicine. Despite much ongoing research in this field, the precise role of molecular linkers in governing the morphology and properties of the hybrid nano-assemblies remains unclear. Previously we have demonstrated that branched linkers, such as hyperbranched polymers, with specific anchoring end groups can be successfully employed to form assemblies of gold NPs demonstrating near-infrared SPRs and intense SERS scattering. We herein introduce a tailored polymer as a versatile molecular linker, capable of manipulating nano-assembly morphologies and hot-spot density. In addition, this report explores the role of the polymeric linker architecture, specifically the degree of branching of the tailored polymer in determining the formation, morphology and properties of the hybrid nano-assemblies. The degree of branching of the linker polymer, in addition to the concentration and number of anchoring groups, is observed to strongly influence the self-assembly process. The assembly morphology shifts primarily from 1D-like chains to 2D plates and finally to 3D-like globular structures, with increase in degree of branching. Insights have been gained into how the morphology influences the SERS performance of these nano-assemblies with respect to hot-spot density. These findings supplement the understanding of the morphology determining nano-assembly formation and pave the way for the possible application of these nano-assemblies as SERS bio-sensors for medical diagnostics.
Resumo:
Baseline findings from the Healthy Home Child Care Project include data from Family Child Care Providers (FCCPs) in Oregon (n=53) who completed assessments of nutrition and physical activity policies and practices and BMI data for children in the care of FCCPs (n=205). Results show that a significant percentage of FCCPs failed to meet child care standards in several areas and that 26.8% of children under the care of FCCPs were overweight or obese. These data supported the development of an Extension-delivered intervention specific to FCCPs in Oregon and highlight areas of concern that should be addressed through targeted trainings of FCCPs.
Resumo:
Previous research has shown that early maturing girls at age I I have lower subsequent physical activity at age 13 in comparison to later maturing girls. Possible reasons for this association have not been assessed. This study examines girls' psychological response to puberty and their enjoyment of physical activity as intermediary factors linking pubertal maturation and physical activity. Participants included 178 girls who were assessed at age 11, of whom 168 were reassessed at age 13. All participants were non-Hispanic white and resided in the US. Three measures of pubertal development were obtained at age I I including Tanner breast stage, estradiol levels, and mothers' reports of girls' development on the Pubertal Development Scale (PDS). Measures of psychological well-being at ages I I and 13 included depression, global self-worth, perceived athletic competence, maturation fears, and body esteem. At age 13, girls' enjoyment of physical activity was assessed using the Physical Activity Enjoyment Scale and their daily minutes of moderate-to-vigorous physical activity (MVPA) were assessed using objective monitoring. Structural Equation Modeling was used to assess direct and indirect pathways between pubertal development at age I I and MVPA at age 13. In addition to a direct effect of pubertal development on MVPA, indirect effects were found for depression, global self-worth and maturity fears controlling for covariates. In each instance, more advanced pubertal development at age I I was associated with lower psychological wellbeing at age 13, which predicted lower enjoyment of physical activity at age 13 and in turn lower MVPA. Results from this study suggest that programs designed to increase physical activity among adolescent girls should address the self-consciousness and discontent that girls' experience with their bodies during puberty, particularly if they mature earlier than their peers, and identify activities or settings that make differences in body shape less conspicuous.
Resumo:
Nowadays, the emergence of resistance to the current available chemotherapeutic drugs by cancer cells makes the development of new agents imperative. The skin secretion of amphibians is a natural rich source of antimicrobial peptides (AMP), and researchers have shown that some of these wide spectrum molecules are also toxic to cancer cells. The aim of this study was to verify a putative anticancer activity of the AMP pentadactylin isolated for the first time from the skin secretion of the frog Leptodactylus labyrinthicus and also to study its cytotoxic mechanism to the murine melanoma cell line B16F10. The results have shown that pentadactylin reduces the cell viability of B16F10 cells in a dose-dependent manner. It was also cytotoxic to normal human fibroblast cells; nevertheless, pentadactylin was more potent in the first case. The studies of action mechanism revealed that pentadactylin causes cell morphology alterations (e.g., round shape and shrinkage morphology), membrane disruption, DNA fragmentation, cell cycle arrest at the S phase, and alteration of mitochondrial membrane potential, suggesting that B16F10 cells die by apoptosis. The exact mechanism that causes reduction of cell viability and cytotoxicity after treatment with pentadactylin is still unknown. In conclusion, as cancer cells become resilient to death, it is worthwhile the discovery of new drugs such as pentadactylin that induces apoptosis.