959 resultados para UV-visible absorption
Resumo:
The photocurrent action spectrum of a Schottky diode formed from electrodeposited poly(3-methylthiophene) is shown to follow closely the UV-visible absorption spectrum. At low forward bias, the peak photocurrent asymptotes to the expected square-root dependence on total potential, V-t, across the depletion region. At high reverse bias the superlinear dependence of the photocurrent on V-t suggests that internal photoemission from the rectifying aluminium electrode may be the dominant process.
Resumo:
Dissertação de mestrado, Qualidade em Análises, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014
Resumo:
The photocurrent action spectrum of a Schottky diode formed from electrodeposited poly(3-methylthiophene) is shown to follow closely the UV-visible absorption spectrum. At low forward bias, the peak photocurrent asymptotes to the expected square-root dependence on total potential, V-t, across the depletion region. At high reverse bias the superlinear dependence of the photocurrent on V-t suggests that internal photoemission from the rectifying aluminium electrode may be the dominant process.
Resumo:
The post-preparative size-selective precipitation technique was applied in CdTe and CdSe semiconductor nanocrystals prepared via colloidal route in water. The synthesis of CdTe and CdSe nanoparticles and the effect of the post-preparative size-selective precipitation have been characterized mainly by mean of ultraviolet and visible absorption spectroscopy (UV-Vis). It was demonstrated that the size-selective precipitation are able to isolate particles of different sizes and purify the nanoparticles as well.
Resumo:
Thermoluminescence, electron paramagnetic resonance and optical absorption properties of rhodonite, a natural silicate mineral, have been investigated and compared to those of synthetic crystal, pure and doped. The TL peaks grow linearly for radiation dose up to 4 kGy, and then saturate. In all the synthetic samples, 140 and 340 degrees C TL peaks are observed; the difference occurs in their relative intensities, but only 340 degrees C peak grows strongly for high doses. Al(2)O(3) and Al(2)O(3) + CaO-doped synthetic samples presented several decades intenser TL compared to that of synthetic samples doped with other impurities. A heating rate of 4 degrees C/s has been used in all the TL readings. The EPR spectrum of natural rhodonite mineral has only one huge signal around g = 2.0 with width extending from 1,000 to 6,000 G. This is due to Mn dipolar interaction, a fact proved by numerical calculation based on Van Vleck dipolar broadening expression. The optical absorption spectrum is rich in absorption bands in near-UV, visible and near-IR intervals. Several bands in the region from 540 to 340 nm are interpreted as being due to Mn(3+) in distorted octahedral environment. A broad and intense band around 1,040 nm is due to Fe(2+). It decays under heating up to 900 degrees C. At this temperature it is reduced by 80% of its original intensity. The pink, natural rhodonite, heated in air starts becoming black at approximately 600 degrees C.
Resumo:
Neodymium doped yttrium aluminoborate and yttrium calcium borate glasses were prepared by the conventional melting-quenching technique with neodymium concentration varying from 0.10 to 1.0 mol%. The obtained glasses present a wide transparency in the UV-visible region (till 240 nm). The thermoluminescent (TL) emission of beta-irradiated samples was measured, showing a broad peak at similar to 240 degrees C with intensities related to the Nd(3+) content, for both glasses. Calcium borate glass samples are about one order of magnitude less luminescent than the aluminoborate glasses. Probably the presence of Ca(2+), instead of Al(3+) and Y(3+) in the matrix, inhibits the production of the intrinsic hole centers. connected to boron and oxygen, known in the literature to act as luminescent centers in TL emission of borate glasses. We suggest that Nd(3+) ions act as electron trapping centers in both glass matrices, as they modify the temperature of emission and the light intensity. Also, the Nd:YAIB glass can be used as a dosimeter in various applications, including radiotherapy. but the sensitivity of this material to neutron should be checked. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The present paper describes the synthesis, characterization, structural refinement and optical absorption behavior of lead tungstate (PbWO(4)) powders obtained by the complex polymerization method heat treated at different temperatures for 2h in air atmosphere. PbWO(4) powders were characterized by X-ray diffraction (XRD), Rietveld refinement, Fourier transform Raman (FT-Raman) spectroscopy and ultraviolet visible (UV-vis) absorption spectroscopy measurements. XRD, Rietveld refinement and FT-Raman revealed that PbWO(4) powders are free of secondary phases and crystallizes in a tetragonal structure. The UV-vis absorption spectroscopy measurements suggest the presence of intermediary energy levels into the band gap of structurally disordered powders. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Interactions of cationic dye methylene blue (MB) with clay particles in aqueous suspension have been extensively studied. As already known, the number of natural negative charges on the clay modifies significantly the particle sizes dispersed in water and therefore the nature of the interaction with the dye. This work evaluated with UV-Vis spectroscopy method how the clay particle sizes weighted on the adsorption and rearrangement of the dye molecules in aqueous system. The results obtained from light-scattering measurements confirmed that larger particles are found in suspensions containing the high-charged clays as the visible absorption band related to the MB aggregates (570 nm) on these suspensions prevailed.
Resumo:
Este trabalho apresenta uma modificação dos procedimentos descritos nas Farmacopéias Francesa e Européia para a análise de flavonoides de Passiflora incarnata L., Passifloraceae, por espectrometria UV-Visível e propõe a sua aplicação na determinação dos flavonoides totais das folhas da espinheira-santa (Maytenus aquifolium Mart. e Maytenus ilicifolia (Schrad.) Planch., Celastraceae) e do maracujá (Passiflora edulis Sims. e Passiflora alata Curtis, Passifloraceae). Os resultados obtidos por espectrometria no UV-Visível foram comparados aos obtidos por cromatografia líquida de alta eficiência (CLAE-UV), encontrando-se resultados estatisticamente similares entre os métodos espectrométrico modificado da Farmacopéia Francesa e CLAE-UV.
Resumo:
Shallow subsurface layers of gold nanoclusters were formed in polymethylmethacrylate (PMMA) polymer by very low energy (49 eV) gold ion implantation. The ion implantation process was modeled by computer simulation and accurately predicted the layer depth and width. Transmission electron microscopy (TEM) was used to image the buried layer and individual nanoclusters; the layer width was similar to 6-8 nm and the cluster diameter was similar to 5-6 nm. Surface plasmon resonance (SPR) absorption effects were observed by UV-visible spectroscopy. The TEM and SPR results were related to prior measurements of electrical conductivity of Au-doped PMMA, and excellent consistency was found with a model of electrical conductivity in which either at low implantation dose the individual nanoclusters are separated and do not physically touch each other, or at higher implantation dose the nanoclusters touch each other to form a random resistor network (percolation model). (C) 2009 American Vacuum Society. [DOI: 10.1116/1.3231449]
Resumo:
The extracellular hemoglobin of Glossoscolex paulistus (HbGp) is constituted of subunits containing heme groups, monomers and trimers, and nonheme structures, called linkers, and the whole protein has a minimum molecular mass near 3.1 x 10(6) Da. This and other proteins of the same family are useful model systems for developing blood substitutes due to their extracellular nature, large size, and resistance to oxidation. HbGp samples were studied by dynamic light scattering (DLS). In the pH range 6.0-8.0, HbGp is stable and has a monodisperse size distribution with a z-average hydrodynamic diameter (D-h) of 27 +/- 1 nm. A more alkaline pH induced an irreversible dissociation process, resulting in a smaller D-h of 10 +/- 1 nm. The decrease in D-h suggests a complete hemoglobin dissociation. Gel filtration chromatography was used to show unequivocally the oligomeric dissociation observed at alkaline pH. At pH 9.0, the dissociation kinetics is slow, taking a minimum of 24 h to be completed. Dissociation rate constants progressively increase at higher pH, becoming, at pH 10.5, not detectable by DILS. Protein temperature stability was also pH-dependent. Melting curves for HbGp showed oligomeric dissociation and protein denaturation as a function of pH. Dissociation temperatures were lower at higher pH. Kinetic studies were also performed using ultraviolet-visible absorption at the Soret band. Optical absorption monitors the hemoglobin autoxidation while DLS gives information regarding particle size changes in the process of protein dissociation. Absorption was analyzed at different pH values in the range 9.0-9.8 and at two temperatures, 25 degrees C and 38 degrees C. At 25 degrees C, for pH 9.0 and 9.3, the kinetics monitored by ultraviolet-visible absorption presents a monoexponential behavior, whereas for pH 9.6 and 9.8, a biexponential behavior was observed, consistent with heme heterogeneity at more alkaline pH. The kinetics at 38 degrees C is faster than that at 25 degrees C and is biexponential in the whole pH range. DLS dissociation rates are faster than the autoxidation dissociation rates at 25 degrees C. Autoxiclation and dissociation processes are intimately related, so that oligomeric protein dissociation promotes the increase of autoxidation rate and vice versa. The effect of dissociation is to change the kinetic character of the autoxidation of hemes from monoexponential to biexponential, whereas the reverse change is not as effective. This work shows that DLS can be used to follow, quantitatively and in real time, the kinetics of changes in the oligomerization of biologic complex supramolecular systems. Such information is relevant for the development of mimetic systems to be used as blood substitutes.
Resumo:
The treatment of textile effluents by the conventional method based on activated sludge followed by a chlorination step is not usually an effective method to remove azo dyes, and can generate products more mutagenic than the untreated dyes. The present work evaluated the efficiency of conventional chlorination to remove the genotoxicity/mutagenicity of the azo dyes Disperse Red 1, Disperse Orange 1, and Disperse Red 13 from aqueous solutions. The comet and micronucleus assays with HepG2 cells and the Salmonella mutagenicity assay were used. The degradation of the dye molecules after the same treatment was also evaluated, using ultraviolet and visible absorption spectrum measurements (UV-vis), high performance liquid chromatography coupled to a diode-array detector (HPLC-DAD), and total organic carbon removal (TOC) analysis. The comet assay showed that the three dyes studied induced damage in the DNA of the HepG2 cells in a dose-dependent manner. After chlorination, these dyes remained genotoxic, although with a lower damage index (DI). The micronucleus test showed that the mutagenic activity of the dyes investigated was completely removed by chlorination, under the conditions tested. The Salmonella assay showed that chlorination reduced the mutagenicity of all three dyes in strain YG1041, but increased the mutagenicity of Disperse Red 1 and Disperse Orange 1 in strain TA98. With respect to chemical analysis, all the solutions showed rapid discoloration and a reduction in the absorbance bands characteristic of the chromophore group of each dye. However, the TOC was not completely removed, showing that chlorination of these dyes is not efficient in mineralizing them. It was concluded that conventional chlorination should be used with caution for the treatment of aqueous samples contaminated with azo dyes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The electronic absorption spectrum of fac[Mn(CO)(3)(phen)imH](+), fac-1 in CH(2)Cl(2) is characterized by a strong absorption band at 378 nm (epsilon(max) = 3200 mol(-1) L cm(-1)). On the basis of quantum mechanical calculations, the visible absorption band has been assigned to ligand-to-ligand charge-transfer (LLCT, im -> phen) and metal-to-ligand charge-transfer (MLCT, Mn -> phen) charge transfer transition. When fac-1 in CH(2)Cl(2) is irradiated with 350 nm continuous light, the absorption features are gradually shifted to represent those of the meridional complex mer-[Mn(CO)(3)(phen)imH](+), mer-1 (lambda(max) = 556 nm). The net photoreaction under these conditions is a photoisomerization, although, the presence of the long-lived radical species was also detected by (1)H NMR and FTIR spectroscopy. 355 nm continuous photolysis of fac-1 in CH(3)CN solution also gives the long-lived intermediate which is readly trapped by metylviologen (MV(2+)) giving rise to the formation of the one-electron reduced methyl viologen (MV(center dot+)). The UV-vis spectra monitored during the slow (45 min) thermal back reaction exhibited isosbestic conversion at 426 nm. On the basis of spectroscopic techniques and quantum mechanical calculations, the role of the radicals produced is analyzed.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química
Resumo:
É sabido que devido à escassez de água potável, nomeadamente em países sub-desenvolvidos, morrem milhares de pessoas por ano, com a procura de fontes de água alternativas, que por sua vez se encontram contaminadas com microrganismos patogénicos; a este facto também se salienta a possibilidade de ocorrência de catástrofes naturais, tornando-se necessário o desenvolvimento de sistemas de desinfecção prácticos, de baixo custo e eficientes. O trabalho experimental desenvolvido focou-se nestas realidades, tendo por objectivo principal o desenvolvimento de um papel bactericida, em particular, um papel de baixo custo como é o caso do papel de filtro de café, para aplicação em desinfecção de água. Este papel foi funcionalizado com nanopartículas sintetizadas de prata, óxido de zinco e com ambas, assim como com nanopartículas comerciais, cuja caracterização foi feita por Microscopia Electrónica de Varrimento (SEM, Scanning Electron Microscopy), Energia Dispersiva de Raios-X (EDS, Energy-dispersive X-ray Spectroscopy), Espectroscopia de Ultravioleta-Visível (UV-VIS Uv-Visible Spectroscopy), Difracção de Raios-X (DRX, X-Rays Diffraction), Análise Termogravimétrica (TA, Thermal Analysis), e Calorimetria Diferencial de Varrimento (DSC, Differencial Scanning Calorimetry) e a actividade anti-bacteriana dos papéis foi avaliada através de Testes de Sensibilidade aos Antibióticos, pelo Método de Kirby-Bauer, contra as bactérias S.a.ATCC25923 e E.coli ATCC25922. No decorrer das sínteses variaram-se alguns parâmetros consoante o tipo de nanopartícula, para as np´s de prata variou-se essencialmente a metodologia de síntese e o tipo de redutor, para as np´s de óxido de zinco, dado ser um composto fotossensível, submeteu-se o papel á luz ultravioleta, o que, por outro lado também esterelizava o papel, e para ter uma comparação, esterelizou-se também o papel pela autoclave, constatando-se, pelas técnicas de caracterização, nomeadamente DRX, que os papeis não continham nanopartículas de óxido de zinco mas sim de acetato de zinco. Surpreendentemente, nos papéis autoclavados já se detectou a presença de óxido de zinco. Com os papéis que evidenciararam maior actividade anti-bacteriana realizaram-se filtrações de membrana com amostras de água contaminada e a determinação da concentração de metal no filtrado foi realizada pela técnica de Espectroscopia de Absorção Atómica de Chama (Flame Atomic Absorption Spectroscopy) conseguindo-se uma taxa de redução bacteriana de practicamente 100% para E.coli NCTC 9001 e E.f NCTC775 com os papéis contendo acetato de zinco numa concentração de 50 mM e np´sAg e acetato de zinco, numa concentração de 10 mM. De forma a validar o trabalho desenvolvido a parte final consistiu em testar os filtros com melhores propriedades em águas contaminadas, tendo esse trabalho sido feito no Laboratório de Água de Consumo dos Serviços Municipalizados de Água e Saneamento de Almada.