956 resultados para URBAN SUSTAINABILITY


Relevância:

40.00% 40.00%

Publicador:

Resumo:

At global level, the population is increasingly concentrating in the cities. In Europe, around 75% of the population lives in urban areas and, according to the European Environmental Agency (2010), urban population is foreseen to increase up to 80 % by 2020. At the same time, the quality of life in the cities is declining and urban pollution keeps increasing in terms of carbon dioxide (CO2) emissions, waste, noise, and lack of greenery. Many of European cities struggle to cope with social, economic and environmental problems resulting from pressures such as overcrowding or decline, social inequity, health problems related to food security and pollution. Nowadays local authorities try to solve these problems related to the environmental sustainability through various urban logistics measures, which directly and indirectly affect the urban food supply system, thus an integrated approach including freight transport and food provisioning policies issues is needed. This research centres on the urban food transport system and its impact on the city environmental sustainability. The main question that drives the research analysis is "How the urban food distribution system affects the ecological sustainability in modern cities?" The research analyses the city logistics project for food transport implemented in Parma, Italy, by the wholesale produce market. The case study investigates the renewed role of the wholesale market in the urban food supply chain as commercial and logistic operator, referring to the concept of food hub. Then, a preliminary analysis on the urban food transport for the city of Bologna is presented. The research aims at suggesting a methodological framework to estimate the urban food demand, the urban food supply and to assess the urban food transport performance, in order to identify external costs indicators that help policymakers in evaluating the environmental sustainability of different logistics measures

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main contribution of this research paper is to display a range of figures and values which could help urban planners to quantify the urban phenomenon of sprawl. In this way, after a rigorous analysis and comparison between a scattered urban fabric (Majadahonda) and a compact urban fabric (Alcorcón), several possible indexes are established and characterized in order to verify the main hypothesis: in what extent land consumption and exploitation of energy resources are higher in a scattered urban fabric than in a compact one.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Urban parks have long been valued for the environmental, social, and economic benefits they provide. Increasingly, parks are also being recognized as features important for sustainable city design. This Capstone Project will identify, compare, analyze, and discuss means for designing sustainable urban parks. Recommendations for designing sustainable urban parks, based on project results, include: 1) ensure park features will support high levels of human activity; 2) use gravel to construct park trails; 3) purchase playground structures made of recycled materials; 4) plant a high number of perennials in flowerbeds and other vegetated areas; 5) plant climate-appropriate plants in vegetated areas; 6) ensure parks have high levels of plant diversity; and 7) develop future studies further exploring sustainable park design.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As the world population continues to grow past seven billion people and global challenges continue to persist including resource availability, biodiversity loss, climate change and human well-being, a new science is required that can address the integrated nature of these challenges and the multiple scales on which they are manifest. Sustainability science has emerged to fill this role. In the fifteen years since it was first called for in the pages of Science, it has rapidly matured, however its place in the history of science and the way it is practiced today must be continually evaluated. In Part I, two chapters address this theoretical and practical grounding. Part II transitions to the applied practice of sustainability science in addressing the urban heat island (UHI) challenge wherein the climate of urban areas are warmer than their surrounding rural environs. The UHI has become increasingly important within the study of earth sciences given the increased focus on climate change and as the balance of humans now live in urban areas.

In Chapter 2 a novel contribution to the historical context of sustainability is argued. Sustainability as a concept characterizing the relationship between humans and nature emerged in the mid to late 20th century as a response to findings used to also characterize the Anthropocene. Emerging from the human-nature relationships that came before it, evidence is provided that suggests Sustainability was enabled by technology and a reorientation of world-view and is unique in its global boundary, systematic approach and ambition for both well being and the continued availability of resources and Earth system function. Sustainability is further an ambition that has wide appeal, making it one of the first normative concepts of the Anthropocene.

Despite its widespread emergence and adoption, sustainability science continues to suffer from definitional ambiguity within the academe. In Chapter 3, a review of efforts to provide direction and structure to the science reveals a continuum of approaches anchored at either end by differing visions of how the science interfaces with practice (solutions). At one end, basic science of societally defined problems informs decisions about possible solutions and their application. At the other end, applied research directly affects the options available to decision makers. While clear from the literature, survey data further suggests that the dichotomy does not appear to be as apparent in the minds of practitioners.

In Chapter 4, the UHI is first addressed at the synoptic, mesoscale. Urban climate is the most immediate manifestation of the warming global climate for the majority of people on earth. Nearly half of those people live in small to medium sized cities, an understudied scale in urban climate research. Widespread characterization would be useful to decision makers in planning and design. Using a multi-method approach, the mesoscale UHI in the study region is characterized and the secular trend over the last sixty years evaluated. Under isolated ideal conditions the findings indicate a UHI of 5.3 ± 0.97 °C to be present in the study area, the magnitude of which is growing over time.

Although urban heat islands (UHI) are well studied, there remain no panaceas for local scale mitigation and adaptation methods, therefore continued attention to characterization of the phenomenon in urban centers of different scales around the globe is required. In Chapter 5, a local scale analysis of the canopy layer and surface UHI in a medium sized city in North Carolina, USA is conducted using multiple methods including stationary urban sensors, mobile transects and remote sensing. Focusing on the ideal conditions for UHI development during an anticyclonic summer heat event, the study observes a range of UHI intensity depending on the method of observation: 8.7 °C from the stationary urban sensors; 6.9 °C from mobile transects; and, 2.2 °C from remote sensing. Additional attention is paid to the diurnal dynamics of the UHI and its correlation with vegetation indices, dewpoint and albedo. Evapotranspiration is shown to drive dynamics in the study region.

Finally, recognizing that a bridge must be established between the physical science community studying the Urban Heat Island (UHI) effect, and the planning community and decision makers implementing urban form and development policies, Chapter 6 evaluates multiple urban form characterization methods. Methods evaluated include local climate zones (LCZ), national land cover database (NCLD) classes and urban cluster analysis (UCA) to determine their utility in describing the distribution of the UHI based on three standard observation types 1) fixed urban temperature sensors, 2) mobile transects and, 3) remote sensing. Bivariate, regression and ANOVA tests are used to conduct the analyses. Findings indicate that the NLCD classes are best correlated to the UHI intensity and distribution in the study area. Further, while the UCA method is not useful directly, the variables included in the method are predictive based on regression analysis so the potential for better model design exists. Land cover variables including albedo, impervious surface fraction and pervious surface fraction are found to dominate the distribution of the UHI in the study area regardless of observation method.

Chapter 7 provides a summary of findings, and offers a brief analysis of their implications for both the scientific discourse generally, and the study area specifically. In general, the work undertaken does not achieve the full ambition of sustainability science, additional work is required to translate findings to practice and more fully evaluate adoption. The implications for planning and development in the local region are addressed in the context of a major light-rail infrastructure project including several systems level considerations like human health and development. Finally, several avenues for future work are outlined. Within the theoretical development of sustainability science, these pathways include more robust evaluations of the theoretical and actual practice. Within the UHI context, these include development of an integrated urban form characterization model, application of study methodology in other geographic areas and at different scales, and use of novel experimental methods including distributed sensor networks and citizen science.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Urban areas such as megacities (those with populations greater than 10 million) are hotspots of global water use and thus face intense water management challenges. Urban areas are influenced by local interactions between human and natural systems and interact with distant systems through flows of water, food, energy, people, information, and capital. However, analyses of water sustainability and the management of water flows in urban areas are often fragmented. There is a strong need to apply integrated frameworks to systematically analyze urban water dynamics and factors that influence these dynamics. We apply the framework of telecoupling (socioeconomic and environmental interactions over distances) to analyze urban water issues, using Beijing as a demonstration megacity. Beijing exemplifies the global water sustainability challenge for urban settings. Like many other cities, Beijing has experienced drastic reductions in quantity and quality of both surface water and groundwater over the past several decades; it relies on the import of real and virtual water from sending systems to meet its demand for clean water, and releases polluted water to other systems (spillover systems). The integrative framework we present demonstrates the importance of considering socioeconomic and environmental interactions across telecoupled human and natural systems, which include not only Beijing (the water-receiving system) but also water-sending systems and spillover systems. This framework helps integrate important components of local and distant human–nature interactions and incorporates a wide range of local couplings and telecouplings that affect water dynamics, which in turn generate significant socioeconomic and environmental consequences, including feedback effects. The application of the framework to Beijing reveals many research gaps and management needs. We also provide a foundation to apply the telecoupling framework to better understand and manage water sustainability in other cities around the world.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This doctoral dissertation represents a cluster of research activities carried out at the DICAM Department of the University of Bologna during a three-year Ph.D. course. The goal of this research is to show how the development of an interconnected infrastructure network, aimed at promoting accessibility and sustainability of places, is fundamental in a framework of deep urban regeneration. Sustainable urban mobility plays an important role in improving the quality of life of citizens. From an environmental point of view, a sustainable mobility system means reducing fuel discharges and energy waste and, in general, aims to promote low carbon emissions. At the same time, a socially and economically sustainable mobility system should be accessible to everybody and create more job opportunities through better connectivity and mobility. Environmentally friendly means of transport such as non-motorized transport, electric vehicles, and hybrid vehicles play an important role in achieving sustainability but require a planned approach at the local policy level. The aim of this study is to demonstrate that, through a targeted reconnection of road and cycle-pedestrian routes, the quality of life of an urban area subject to degradation can be significantly improved just by increasing its accessibility and sustainability. Starting from a detailed study of the European policies and from the comparison with real similar cases, the case study of the Canal Port of Rimini (Italy) has been analysed within the European project FRAMESPORT. The analysis allowed the elaboration of a multicriterial methodology to get to the definition of a project proposal and of a priority scale of interventions. The applied methodology is a valuable tool that may be used in the future in similar urban contexts. Finally, the whole project was represented by using virtual reality to visually show the difference between the before and after the regeneration intervention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Urban regeneration is more and more a “universal issue” and a crucial factor in the new trends of urban planning. It is no longer only an area of study and research; it became part of new urban and housing policies. Urban regeneration involves complex decisions as a consequence of the multiple dimensions of the problems that include special technical requirements, safety concerns, socio-economic, environmental, aesthetic, and political impacts, among others. This multi-dimensional nature of urban regeneration projects and their large capital investments justify the development and use of state-of-the-art decision support methodologies to assist decision makers. This research focuses on the development of a multi-attribute approach for the evaluation of building conservation status in urban regeneration projects, thus supporting decision makers in their analysis of the problem and in the definition of strategies and priorities of intervention. The methods presented can be embedded into a Geographical Information System for visualization of results. A real-world case study was used to test the methodology, whose results are also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the centuries there has been a growing trend of societies and it is possible to verify their economic growth. This growth has provided an increased pressure on natural resources, often over-reaching the boundaries of each country, which has called into question the level of environmental sustainability in different countries. Sustainability is understood as a complex concept involving ecological, social, economic dimensions and temporal urban processes. Therefore, Firmino (2009) suggests that the ecological footprint (EF) allows people to establish dependency relations between human activities and the natural resources required for such activities and for the absorption of waste generated. According to Bergh & Verbruggen (1999) the EF is an objective, impartial and one-dimensional indicator that enables people to assess the sustainability. The Superior Schools have a crucial role in building the vision of a sustainable future as a reality, because in transmitting values and environmental principles to his students, are providing that they, in exercising his professional activity, make decisions weighing the environmental values. This ensures improved quality of life. The present study aims to determine the level of environmental sustainability of the Academic Community of Lisbon College of Health Technology (ESTeSL), by calculating the EF, and describe whether a relation between Footprint and various socio-demographic characteristics of the subjects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para a obtenção do Grau de Mestre em Engenharia e Gestão da Água

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Institute of Public Health in Ireland is an all-island body which aims to improve health in Ireland by working to combat health inequalities and influence public policies in favour of health. The Institute promotes co-operation in research, training, information and policy in order to contribute to policies which tackle inequalities in health.   Over the past ten years the Institute has worked closely with the Department of Health and Children and the Department of Health, Social Services and Public Safety in Northern Ireland to build capacity for public health across the island of Ireland.   The Institute takes the view that health is determined by policies, plans and programmes in many sectors outside the health sector as well as being dependent on access to and availability of first class health services. The importance of other sectors is encapsulated in a social determinants of health perspective which recognises that health is largely shaped and influenced by the physical, social, economic and cultural environments in which people live, work and play. Figure 1 illustrates these multi-dimensional impacts on health and also serves to highlight the clear and inextricable links between health and sustainable development. Factors that impact on long-term sustainability will thus also impact on health.