1000 resultados para ULTRASTRUCTURAL ASPECTS
Resumo:
Pós-graduação em Ciências Biológicas (Botânica) - IBB
Resumo:
We performed a macroscopic and microscopic study of the tongues of common opossums, Didelphis marsupialis, from South America. We studied two males and two females. We collected morphometric data on the tongue with precision calipers. For the light microscopy and scanning electron microscopy analyses, we fixed tissue fragments in 10% formaldehyde and 2.5% glutaraldehyde, respectively. The opossum tongues averaged 5.87 +/- 0.20 cm in length, 3.27 +/- 0.15 cm in width at the lingual body, and 3.82 +/- 0.15 cm in width at the root. The mean thickness of the lingual body was 1.8 +/- 0.1 cm, and the thickness of the root was 3.82 +/- 0.15 cm. Sharp filiform papillae were scattered across the entire tongue; conical filiform papillae occurred on the lingual body and tongue tip; fungiform papillae were scattered among the filiform papillae on the lingual body and tongue tip; and there were three vallate papillae at the root of the tongue. We found two strands of papillary projections in the tongue root. Despite the low variability observed in the lingual papillae, the morphological data obtained in this study may be related to the opossum's diverse food habits and the extensive geographic distribution of the species throughout America. Microsc. Res. Tech. 2012. (c) 2012 Wiley Periodicals, Inc.
Resumo:
Histopathological and ultrastructural studies of 23 patients who died with clinical diagnosis of measles were carried out. In 12 cases viral nucleocapsids were searched by electron microscopy and detected in 100% of the cases in the lungs and in 50% of the cases in the central nervous system. They were mostly intranuclear. Histopathological changes associated to neurological alterations and the detection of virion are discussed in relation to acute and delayed clinical manifestations.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Age-related morphological, ultrastructural and morphometric changes in the capillaries of the superficial and deep plexuses of the rat retina were studied in animals aged from 3 to 15 months. Our results suggest that age-related morphological alterations start occurring in the retina of rats at about 12 months of age. Increased glycogen deposits, pinocytotic vesicles, residual bodies and cell debris were observed in both the endothelial and pericytic cells of 12- and 15-month-old animals. In addition, heterogeneous osmiophilic accumulations, electron-transparent spaces were observed in the basement membrane as well as projections of the basement membrane towards the neighboring cells. Morphometric examination of the two vascular plexuses studied did not show differences in the area of the endothelial or pericytic cells, basement membrane or vascular lumen between rats of different ages.
Resumo:
The midgut of Apis mellifera is remodeled during metamorphosis. The epithelium and, to a lesser extent, the muscular sheath degenerate between the end of the last larval instar and the onset of pupation (prepupa).The larval epithelium is shed to the midgut lumen and digested, while a new epithelium is reconstructed from larval regenerative cells. During pupation, some reorganization still occurs, mainly in brown-eyed pupae. In pharate adult, the midgut wall shows the characteristics of adult, although some cells have pycnotic nuclei. The localization of alkaline and acid phosphatases showed that these enzymes were not involved in the reabsorption of the midgut wall.
Resumo:
This work aimed to investigate some aspects related to the pathogenicity of Lechiguana, a bovine fibroproliferative lesion characterized by rapid collagen accumulation. Light and transmission electron microscopy and in situ hybridization studies were performed in order to elucidate the fibrogenic activity of this lesion. The characterization of fibroblastic plasticity in the lesion was done by immunohistochemical study for alpha-smooth-muscle cell actin. The ovoid-shaped cells presented positive reaction for alpha-smooth-muscle cell actin in their cytoplasm and, at the electron-microscopic level demonstrated basal lamina-like material adjacent to the external surface and collagen fibrils that corresponded to a cell population phenotypically similar to the myofibroblast. We also investigated alpha 1 collagen type I mRNA at different times of evolution of Lechiguana lesions, using isotopic and non-isotopic in situ hybridization. The results strongly suggest the involvement of a myofibroblast-like cell population that expresses mRNA for type I collagen and is probably associated with the increase of collagen deposition.
Resumo:
En la hipótesis de trabajo del presente proyecto se considera la importancia del metabolismo de lípidos y proteínas en los insectos hematófagos, en particular en los vectores de la enfermedad de Chagas, para afrontar exitosamente la demanda energética de la reproducción. Las hembras de estas especies pueden ingerir una comida de sangre abundante en lípidos y proteínas, los que son modificados en el intestino para su utilización y posterior almacenamiento en estructuras organizadas en el tejido ovárico, sustentando así el rápido crecimiento de los ovocitos. Estos aspectos resultan críticos para el ciclo de vida del insecto y para el mantenimiento de la cadena epidemiológica de la enfermedad. En estas especies, recientemente hemos caracterizado a nivel bioquímico y celular la interacción entre lipoproteínas y tejidos [Fruttero y col., Insect Biochem. Mol. Biol. 39: 322-331 (2009); Fruttero y col. Biocel 33 (3): 260 (2009)] y las fases del ciclo reproductivo [Aguirre y col., J. Insect Physiol. 54: 393-402 (2008)]. No obstante, los factores que participan en su regulación son aún escasamente conocidos. En este contexto, el estudio propone emplear dos especies de triatominos con el objeto de: (1) caracterizar los factores involucrados en la formación y regulación de reservas nutricionales en los ovocitos; (2) analizar los eventos que participan en la regresión del tejido ovárico: atresia folicular y mecanismos de muerte celular. (3) evaluar el impacto de productos naturales (ureasas vegetales y péptidos derivados) en el desarrollo del tejido ovárico. Para la ejecución de los objetivos se llevarán a cabo ensayos in vivo e in vitro con trazadores fluorescentes, fraccionamiento subcelular, estudios de expresión de proteínas (mRNA y proteína), estudios histo-morfológicos, ultraestructurales e inmunocitoquímicos, microscopía láser confocalizada, ensayos de actividad enzimática, ELISA, western-blot, electroforesis bidimensional, espectrometria de masas en tándem, etc. También se evaluarán los mecanismos de muerte celular (apoptosis/autofagia) mediante microscopía electrónica, detección de apoptosis in situ (TUNEL), inmunofluorescencia, etc. Los resultados obtenidos permitirán un mejor conocimiento sobre la fisiología y bioquímica de estos vectores, los que resultan indispensables en el diseño de nuevas estrategias para su control. Debido a la carencia de un tratamiento específico para la enfermedad y a la falta de métodos preventivos (vacuna), el control del vector es una de las vías más importantes para reducir la incidencia de la enfermedad. Actualmente, la situación socio-económica que sufren amplios núcleos de nuestra población propicia condiciones de vida que facilitan la reproducción de los vectores y la transmisión vectorial del parásito. El estudio permitirá además explorar aspectos bioquímicos y celulares básicos, generando conocimientos que podrían ser extensivos a otros insectos de importancia económica en la ganadería y/o agricultura. The aim of this project is to analyze the biochemical and cellular events involved in the lipid and protein metabolism in Chagas' disease vectors, and to evaluate their impact on the physiology of reproduction, particularly in the formation of nutritional resources in developing oocytes. At present, little is known about these critical aspects for the life cycle of the insect and for the epidemiology of the disease. The experimental approaches, which will be carried out using two species of triatomines, were designed: (1) to characterize factors involved in the formation and regulation of nutritional resources in developing oocytes; (2) to analyze the biochemical and cellular events that play a role during the regression of ovarian tissue, including the processes of oocyte resorption and programmed cell death. (3) to evaluate the impact of natural products (ureases from jackbean and related peptides) in the development of ovarian tissue. Methods and techniques involved in the project are: in vivo and in vitro assays with fluorescent tracers, ELISA, chemical assays, enzyme activities, western-blot; protein expression (mRNA), histological techniques, immunohistochemical and ultrastructural studies. Cell death will be analyzed by detection of apoptosis in situ (TUNEL), immunofluorescence (for autophagy), among others. The results obtained from the study will offer the opportunity to explore important aspects in the biology and physiology of Chagas' disease vectors that could be of potential utility in designing alternative strategies for the control of the insect.
Resumo:
Differing from the studied Eutheria the white belly opossum Peyer"s patches do not present a conspicous dome. M cells are located in the inmer layer of bilaminal invaginations formed at the bottom of the villi. A great variation in the morphology of M cells was observed. The enterocytes located at the epithelial inner layer may present endocytic vesicles, and the microvilli are shorter tha the microvilli of enterocytes lining the small intestine. As these morphological aspects have been described to exist in the enterocytes of the lancet opossum small intstine it was surmised that the opossum Peyer's patches special epithelium could represent the persistence in adult animals of a cellular pattern established before the intestinal maturation had occurred.
Resumo:
Calomys callosus a wild rodent, is a natural host of Trypanosoma cruzi. Twelve C. callosus were infected with 10(5) trypomastigotes of the F strain (a myotropic strain) of T. cruzi. Parasitemia decreased on the 21 st day becoming negative around the 40th day of infection. All animals survived but had positive parasitological tests, until the end of the experiment. The infected animals developed severe inflammation in the myocardium and skeletal muscle. This process was pronounced from the 26 th to the 30th day and gradually subsided from the 50 th day becoming absent or residual on the 64 th day after infection. Collagen was identified by the picro Sirius red method. Fibrogenesis developed early, but regression of fibrosis occurred between the 50th and 64th day. Ultrastructural study disclosed a predominance of macrophages and fibroblasts in the inflammatory infiltrates, with small numbers of lymphocytes. Macrophages had active phagocytosis and showed points of contact with altered muscle cells. Different degrees of matrix expansion were present, with granular and fibrilar deposits and collagen bundles. These alterations subsided by the 64th days. Macrophages seem to be the main immune effector cell in the C. callosus model of infection with T. cruzi. The mechanisms involved in the rapid fibrogenesis and its regression deserve further investigation.
Resumo:
Although the predilection for Toxoplasma gondii to form cysts in the nervous system and skeletal and heart muscles has been described for more than fifty years, skeletal muscle cells (SkMCs) have not been explored as a host cell type to study the Toxoplasma-host cell interaction and investigate the intracellular development of the parasite. Morphological aspects of the initial events in the Toxoplasma-SkMC interaction were analysed and suggest that there are different processes of protozoan adhesion and invasion and of the subsequent fate of the parasite inside the parasitophorous vacuole (PV). Using scanning electron microscopy,Toxoplasma tachyzoites from the mouse-virulent RH strain were found to be attached to SkMCs by the anterior or posterior region of the body, with or without expansion of the SkMC membrane. This suggests that different types of parasite internalization occurred. Asynchronous multiplication and differentiation of T. gondii were observed. Importantly, intracellular parasites were seen to display high amounts of amylopectin granules in their cytoplasm, indicating that tachyzoites of the RH strain were able to differentiate spontaneously into bradyzoites in SkMCs. This stage conversion occurred in approximately 3% of the PVs. This is particularly intriguing as tachyzoites of virulent Toxoplasma strains are not thought to be prone to cyst formation. We discuss whether biological differences in host cells are crucial to Toxoplasma stage conversion and suggest that important questions concerning the host cell type and its relevance in Toxoplasma differentiation are still unanswered.
Resumo:
ABSTRACT Adult neuronal plasticity is a term that corresponds to a set of biological mechanisms allowing a neuronal circuit to respond and adapt to modifications of the received inputs. Mystacial whiskers of the mouse are the starting point of a major sensory pathway that provides the animal with information from its immediate environment. Through whisking, information is gathered that allows the animal to orientate itself and to recognize objects. This sensory system is crucial for nocturnal behaviour during which vision is not of much use. Sensory information of the whiskers are sent via brainstem and thalamus to the primary somatosensory area (S1) of the cerebral cortex in a strictly topological manner. Cell bodies in the layer N of S 1 are arranged in ring forming structures called barrels. As such, each barrel corresponds to the cortical representation in layer IV of a single whisker follicle. This histological feature allows to identify with uttermost precision the part of the cortex devoted to a given whisker and to study modifications induced by different experimental conditions. The condition used in the studies of my thesis is the passive stimulation of one whisker in the adult mouse for a period of 24 hours. It is performed by glueing a piece of metal on one whisker and placing the awake animal in a cage surrounded by an electromagnetic coil that generates magnetic field burst inducing whisker movement at a given frequency during 24 hours. I analysed the ultrastructure of the barrel corresponding the stimulated whisker using serial sections electron microscopy and computer-based three-dimensional reconstructions; analysis of neighbouring, unstimulated barrels as well as those from unstimulated mice served as control. The following elements were structurally analyzed: the spiny dendrites, the axons of excitatory as well as inhibitory cells, their connections via synapses and the astrocytic processes. The density of synapses and spines is upregulated in a barrel corresponding to a stimulated whisker. This upregulation is absent in the BDNF heterozygote mice, indicating that a certain level of activity-dependent released BDNF is required for synaptogenesis in the adult cerebral cortex. Synpaptogenesis is correlated with a modification of the astrocytes that place themselves in closer vicinity of the excitatory synapses on spines. Biochemical analysis revealed that the astrocytes upregulate the expression of transporters by which they internalise glutamate, the neurotransmitter responsible for the excitatory response of cortical neurons. In the final part of my thesis, I show that synaptogenesis in the stimulated barrel is due to the increase in the size of excitatory axonal boutons that become more frequently multisynaptic, whereas the inhibitory axons do not change their morphology but form more synapses with spines apposed to them. Taken together, my thesis demonstrates that all the cellular elements present in the neuronal tissue of the adult brain contribute to activity-dependent cortical plasticity and form part of a mechanism by which the animal responds to a modified sensory experience. Throughout life, the neuronal circuit keeps the faculty to adapt its function. These adaptations are partially transitory but some aspects remain and could be the structural basis of a memory trace in the cortical circuit. RESUME La plasticité neuronale chez l'adulte désigne un ensemble de mécanismes biologiques qui permettent aux circuits neuronaux de répondre et de s'adapter aux modifications des stimulations reçues. Les vibrisses des souris sont un système crucial fournissant des informations sensorielles au sujet de l'environnement de l'animal. L'information sensorielle collectée par les vibrisses est envoyée via le tronc cérébral et le thalamus à l'aire sensorielle primaire (S 1) du cortex cérébral en respectant strictement la somatotopie. Les corps cellulaires dans la couche IV de S 1 sont organisés en anneaux délimitant des structures nommées tonneaux. Chaque tonneau reçoit l'information d'une seule vibrisse et l'arrangement des tonneaux dans le cortex correspond à l'arrangement des vibrisses sur le museau de la souris. Cette particularité histologique permet de sélectionner avec certitude la partie du cortex dévolue à une vibrisse et de l'étudier dans diverses conditions. Le paradigme expérimental utilisé dans cette thèse est la stimulation passive d'une seule vibrisse durant 24 heures. Pour ce faire, un petit morceau de métal est collé sur une vibrisse et la souris est placée dans une cage entourée d'une bobine électromagnétique générant un champ qui fait vibrer le morceau de métal durant 24 heures. Nous analysons l'ultrastructure du cortex cérébral à l'aide de la microscopie électronique et des coupes sériées permettant la reconstruction tridimensionnelle à l'aide de logiciels informatiques. Nous observons les modifications des structures présentes : les dendrites épineuses, les axones des cellules excitatrices et inhibitrices, leurs connections par des synapses et les astrocytes. Le nombre de synapses et d'épines est augmenté dans un tonneau correspondant à une vibrisse stimulée 24 heures. Basé sur cela, nous montrons dans ces travaux que cette réponse n'est pas observée dans des souris hétérozygotes BDNF+/-. Cette neurotrophine sécrétée en fonction de l'activité neuronale est donc nécessaire pour la synaptogenèse. La synaptogenèse est accompagnée d'une modification des astrocytes qui se rapprochent des synapses excitatrices au niveau des épines dendritiques. Ils expriment également plus de transporteurs chargés d'internaliser le glutamate, le neurotransmetteur responsable de la réponse excitatrice des neurones. Nous montrons aussi que les axones excitateurs deviennent plus larges et forment plus de boutons multi-synaptiques à la suite de la stimulation tandis que les axones inhibiteurs ne changent pas de morphologie mais forment plus de synapses avec des épines apposées à leur membrane. Tous les éléments analysés dans le cerveau adulte ont maintenu la capacité de réagir aux modifications de l'activité neuronale et répondent aux modifications de l'activité permettant une constante adaptation à de nouveaux environnements durant la vie. Les circuits neuronaux gardent la capacité de créer de nouvelles synapses. Ces adaptations peuvent être des réponses transitoires aux stimuli mais peuvent aussi laisser une trace mnésique dans les circuits.
Resumo:
Swine eperythrozoonosis is a haemotrophic disease caused by Eperythrozoon suis, actually called Mycoplasma suis, an extracellular bacterial organism that apparently adheres to pig erythrocyte membrane, inducing its deformation and damage. Since little is known about the ultrastructural and morphometrical aspects of this microorganism, the present work aimed to deal with these issues. The ultrastructural study revealed the presence of structures corresponding to tubules disseminated throughout the soma of M. suis. A variable separation between the microorganism membrane and that of the erythrocyte was also observed. The structural and positional attitude of M. suis could allow speculation about its mechanism of action.
Resumo:
Background and Aims Considering that few studies on nectary anatomy and ultrastructure are available for chiropterophilous flowers and the importance of Hymenaea stigonocarpa in natural 'cerrado' communities, the present study sought to analyse the structure and cellular modifications that take place within its nectaries during the different stages of floral development, with special emphasis on plastid dynamics.Methods For the structural and ultrastructural studies the nectary was processed as per usual techniques and studied under light, scanning and transmission electron microscopy. Histochemical tests were employed to identify the main metabolites on nectary tissue and secretion samples.Key Results The floral nectary consists of the inner epidermis of the hypanthium and vascularized parenchyma. Some evidence indicates that the nectar release occurs via the stomata. The high populations of mitochondria, and their juxtaposition with amyloplasts, seem to be related to energy needs for starch hydrolysis. Among the alterations observed during the secretory phase, the reduction in the plastid stromatic density and starch grain size are highlighted. When the secretory stage begins, the plastid envelope disappears and a new membrane is formed, enclosing this region and giving rise to new vacuoles. After the secretory stage, cellular structures named 'extrastomatic bodies' were observed and seem to be related to the nectar resorption.Conclusions Starch hydrolysis contributes to nectar formation, in addition to the photosynthates derived directly from the phloem. In these nectaries, the secretion is an energy-requiring process. During the secretion stage, some plastids show starch grain hydrolysis and membrane rupture, and it was observed that the region previously occupied by this organelle continued to be reasonably well defined, and gave rise to new vacuoles. The extrastomatic bodies appear to be related to the resorption of uncollected nectar.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)