992 resultados para UK ESTUARY
Resumo:
This is the Mersey Estuary Saltmarsh vegetation survey 2002 report produced by the English Nature Cheshire in 2003. This report looks at the mapping of vegetation communities on the saltmarsh of the Mersey Estuary. The total area of saltmarsh and associated communities within the Mersey Estuary was found to be 724.1 ha. Most of the saltmarsh in the Mersey Estuary is presently ungrazed or only very lightly grazed, creating a very rank sward in excess of 20 cm in height which is not generally suitable for grazing or roosting birds. On the northern side of the Mersey Estuary, the saltmarsh around the Hale Decoy was lightly grazed by horses, but the remainder was ungrazed. On the south side, the saltmarsh was fairly heavily sheep-grazed along the Frodsham Score, very lightly grazed at Ince Banks by sheep straying from Frodsham and ungrazed at Stanlow Banks. Despite much of it presently being ungrazed, the saltmarsh of the Mersey Estuary is relatively poor in plant species. It appears that this is because the ungrazed areas have been so for less than 20 years and have thus not had time to develop the diversity of a long-established ungrazed marsh. However, withdrawal or depletion of grazing has produced a rank sward which is less valuable to grazing and roosting birds.
Resumo:
Two fishermen pulling a net in a boat in Lune Estuary, North West England, UK. This photo is part of a Photo Album that includes pictures from 1935 to 1954.
Resumo:
This is the report on the Leven estuary project: Fisheries Department final report produced by the Environment Agency North West in 1997. This report contains information about Leven estuary, river Leven catchment, river Crake catchment and the Ulverston Discharges. The Leven estuary is characterised by being very shallow, and shares the extremely variable tides and currents that characterize the whole of Morecambe Bay. There was little detailed knowledge of the impact on the Leven estuary, and particularly its fisheries, of the discharges from Ulverston. There has been some concern expressed by the lave netsmen and the general public about the possible harmful effects of the effluents on the biology of the estuary. In the absence of a definite strategy for the protection and management of the estuary was born this project. The project involves water quality monitoring, effluent and estuary toxicity testing, tracking of effluent plumes, and salmonid tagging and tracking. The entire project commenced in June 1995 and was expected to reach a conclusion in March 1997. The information gained from the project was expected to contribute to the creation of a 'mixing zone' for the effluent, and to improve the environmental management of the estuary and protection of its fishery.
Resumo:
This is the Kent estuary survey 8th July 1980 produced by the North West Water Authority in 1980. This survey was carried out on the Kent Estuary on the 8th July, 1980 during the period 3h hours before to 1.5 hours after low water. The chemical water quality in the vicinity of Arnside was found, in general, to be good. The E. coli counts were found to be at or below the E E C mandatory value for bathing waters. Downstream of the Arnside outfall the E coli counts were generally above the E E C mandatory value, the counts getting higher at and after low water. B O D values also increased at low water though ammonia and phosphate (except for 1 sample) concentrations were low. The total coliform counts both at Arnside and below the outfall were always above the E E C mandatory level (except for 2 samples).
Resumo:
This is the Kent estuary survey 18th July 1981 produced by the North West Water Authority in 1981. The report focuses on a tidal cycle survey carried out on the Kent estuary on the 18th August, 1981. The chemical water quality at Arnside Pier and at New Barns was, on the whole, acceptable. However, samples taken downstream of the outfall at low water for total coliforms and E. coli were all above the EEC mandatory level whilst those for faecal streptococci were all above the guideline value. This document shows chemical and bacteriological data analysed at Kent estuary such chloride, dissolved oxygen, BOD, ammonia, nitrate, phosphate, total coliforms, E. coli and Faecal streptococci.
Resumo:
This is the Kent estuary 1992 surveys: Summary of results produced by the National Rivers Authority in 1993. The report summarises routine and baseline water quality surveys carried out on the Kent estuary during 1992. Baseline surveys are designed to respond to regional, national, and European requirements. During 1992 baseline surveys were carried out in June and December. Unfortunately, in June, samples could only be taken from stations 3, 7 and 8. For ease of interpretation the results have been presented in graph form, including the maximum and minimum parameter concentration and the appropriate Environmental Quality Standards (EQS). The parameters measured in this survey were physical parameters (temperature, BOD, dissolved oxygen, Ph, salinity, conductivity); nutrients (ammonia, phosphate, and nitrate); metals (Mercury, Nickel, Arsenic, Cadmium, Chromium, Cooper, Boron, and Zinc) and organic compounds.
Resumo:
Concentrations of the weakly oestrogenic degradation products of alkylphenol polyethoxylate (APE) surfactants (nonylphenol, octylphenol, nonylphenol monoethoxylate and nonylphenol diethoxylate) were measured in water and sediments from British rivers and estuaries collected during 1994 and 1995. In addition, a series of samples of tissues of wild fish from the River Aire, and from a laboratory dosing experiment were analysed for alkylphenols, to assess the degree of bioaccumulation of these compounds. Measurable concentrations of APE residues were recorded in the River Aire (15–76 μg/l total extractable alkylphenols), the River Mersey (6–11 μg/l) and the Tees estuary (up to 76 μg/l). These levels exceed, or are close to, the no observed effect concentration for the induction of vitellogenesis in caged trout (5–20 μg/l total extractable alkylphenols), and may be sufficient to exert an oestrogenic effect on fish populations in these areas. A sediment sample from Bingley on the River Aire contained 15 μg/g (dry weight) nonylphenol, and concentrations in sediments from the Tees and Mersey estuaries exceeded 1 μg/g. These rivers receive a variety of trade waters via sewage treatment works (STW) effluents containing significant concentrations of APE. Elsewhere, concentrations in water and sediments were near or below limits of detection and biological effects are unlikely, suggesting that any oestrogenic effects observed in sewage outfalls and rivers not directly impacted by APE-containing trade-waters may be caused by other chemicals. Analysis of samples of trout muscle taken from a tank dosed at 65 μg/l nonylphenol indicated a bioaccumulation factor of between 90 and 125 after 3 weeks exposure. Samples of wild fish from the River Aire contained up to 0.8 μg/g nonylphenol in the muscle, a tissue bioaccumulation factor of approximately 50 relative to measured concentrations in water samples. A series of fish samples taken from offshore for food quality assurance purposes contained no detectable levels of APE residues (0.05–0.1 μg/g nonylphenol).
Resumo:
The Fal Estuary System in West Cornwall has, over many centuries, received inputs of heavy metals from various mining activities. In this context its most important tributary is the Carnon River. Analyses of organisms from the Fal Estuary have shown that some species contain abnormally high concentrations of Cu, Zn and As, especially those living in Restronguet Creek.