988 resultados para Tyre rubber recycled aggregates


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study undertaken at the University of Liverpool has investigated the potential for using construction and demolition waste (C&DW) derived aggregate in the manufacture of a range of precast concrete products, i.e. building and paving blocks and pavement flags. Phase III, which is reported here, investigated
concrete pavement flags. This was subsequent to studies on building and paving blocks. Recycled demolition aggregate can be used to replace newly quarried limestone aggregate, usually used in coarse (6 mm) and fine (4 mm-to-dust) gradings. The first objective was, as was the case with concrete building
and paving blocks, to replicate the process used by industry in fabricating concrete pavement flags in the laboratory. The ‘‘wet’’ casting technique used by industry for making concrete flags requires a very workable mix so that the concrete flows into the mould before it is compressed. Compression squeezes out water from the top as well as the bottom of the mould. This industrial casting procedure was successfully replicated in the laboratory by using an appropriately modified cube crushing machine and a special mould typical of what is used by industry. The mould could be filled outside of the cube crushing machine and then rolled onto a steel frame and into the machine for it to be compressed. The texture and mechanical properties of the laboratory concrete flags were found to be similar to the factory ones. The experimental work involved two main series of tests, i.e. concrete flags made with concrete- and
masonry-derived aggregate. Investigation of flexural strength was required for concrete paving flags. This is different from building blocks and paving blocks which required compressive and tensile splitting strength respectively. Upper levels of replacement with recycled demolition aggregate were determined
that produced similar flexural strength to paving flags made with newly quarried aggregates, without requiring an increase in the cement content. With up to 60% of the coarse or 40% of the fine fractions replaced with concrete-derived aggregates, the target mean flexural strength of 5.0 N/mm2 was still
achieved at the age of 28 days. There was similar detrimental effect by incorporating the fine masonry-derived aggregate. A replacement level of 70% for coarse was found to be satisfactory and also conservative. However, the fine fraction replacement could only be up to 30% and even reduced to 15% when used for mixes where 60% of the coarse fraction was also masonry-derived aggregate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the effect of incorporation of recycled glass fibre reinforced plastics (GFRP) waste materials, obtained by means of shredding and milling processes, on mechanical behaviour of polyester polymer mortars (PM) was assessed. For this purpose, different contents of GFRP recyclates, between 4% up to 12% in weight, were incorporated into polyester PM materials as sand aggregates and filler replacements. The effect of the addition of a silane coupling agent to resin binder was also evaluated. Applied waste material was proceeding from the shredding of the leftovers resultant from the cutting and assembly processes of GFRP pultrusion profiles. Currently, these leftovers as well as non-conform products and scrap resulting from pultrusion manufacturing process are landfilled, with additional costs to producers and suppliers. Hence, besides the evident environmental benefits, a viable and feasible solution for these wastes would also conduct to significant economic advantages. Design of experiments and data treatment were accomplish by means of full factorial design approach and analysis of variance ANOVA. Experimental results were promising toward the recyclability of GFRP waste materials as partial replacement of aggregates and reinforcement for PM materials, with significant improvements on mechanical properties of resultant mortars with regards to waste-free formulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study the effect of incorporation of recycled glass-fibre reinforced polymer (GFRP) waste materials, obtained by means of milling processes, on mechanical behaviour of polyester polymer mortars was assessed. For this purpose, different contents of recycled GFRP waste powder and fibres, with distinct size gradings, were incorporated into polyester based mortars as sand aggregates and filler replacements. Flexural and compressive loading capacities were evaluated and found better than unmodified polymer mortars. GFRP modified polyester based mortars also show a less brittle behaviour, with retention of some loading capacity after peak load. Obtained results highlight the high potential of recycled GFRP waste materials as efficient and sustainable reinforcement and admixture for polymer concrete and mortars composites, constituting an emergent waste management solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mestrado em Engenharia Química - Ramo Otimização Energética na Indústria Química

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blends of Acrylonitrile rubber with Maleic anhydride grafted Whole Tyre Reclaim WTR (MA-g-WTR) have been prepared and the cure and mechanical properties have been studied with respect to reclaim content. Control compounds containing unmodified WTR were also prepared for comparison. Grafting was confirmed by IR studies. Blends containing grafted WTR showed higher minimum torque and (max-min) torque. They also showed longer cure time, scorch time and lower cure rate. Grafting of the WTR with maleic anhydride also resulted in the improved tensile strength, abrasion resistance, compression set and resilience. However, the heat build up under dynamic loading was marginally higher for the blends containing grafted reclaimed rubber.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of diphenylmethane diisocyanate (MDI) -polyethyleneglycol (PEG) resin on the cure characteristics and mechanical properties of nitrile rubber/whole tyre eclaim-short nylon fiber composite-was studied. At a constant loading of 5 phr, the resin composition was varied. The minimum torque .,id (maximum - minimum) torque increased with isocyanate concentration. Scorch time and cure time showed a reduction on introduction of bonding agent. Properties like tensile strength, tear strength, and abrasion resistance increased with increase in MDI/PEG ratio, and these properties are higher in the longitudinal direction of fiber orientation. Compression set increased with isocyanate concentration and the resilience remain unchanged.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis describes utilisation of reclaimed rubber, Whole Tyre Reclaim (WTR) produced from bio non- degradable solid pollutant scrap and used tyres. In this study an attempt has made to optimize the substitution of virgin rubber with WTR in both natural and synthetic rubber compounds without seriously compromising the important mechanical properties. The WTR is used as potent source of rubber hydrocarbon and carbon black filler. Apart from natural rubber (NR), Butadiene rubber (BR), Styrene butadiene rubber (SBR), Acrylonitrile butadiene rubber (NBR) and Chloroprene rubber (CR) were selected for study, being the most widely used general purpose and specialty rubbers. The compatibility problem was addressed by functionalisation of WTR with maleic anhydride and by using a coupling agent Si69.The blends were systematically evaluated with respect to various mechanical properties. The thermogravimetric analyses were also carried out to evaluate the thermal stability of the blends.Mechanical properties of the blends were property and matrix dependant. Presence of reinforcing carbon black filler and curatives in the reclaimed rubber improved the mechanical properties with the exception of some of the elastic properties like heat build up, resilience, compression set. When WTR was blended with natural rubber and synthetic rubbers, as the concentration of the low molecular weight, depolymerised WfR was increased above 46-weight percent, the properties deteriorates.When WTR was blended with crystallizing rubbers such as natural rubber and chloroprene rubber, properties like tensile strength, ultimate elongation were decreased in presence of WTR. Where as in the case of blends of WTR with non-crystallizing rubbers reinforcement effect was more prominent.The effect of functionalisation and coupling agent was studied in three matrices having different levels of polarity(NBR, CR and SBR).The grafting of maleic anhydride on to WTR definitely improved the properties of its blends with NBR, CR and SBR, the effect being prominent in Chloroprene rubber.Improvement in properties of these blends could also achieved by using a coupling agent Si69. With this there is apparent plasticizing effect at higher loading of the coupling agent. The optimum concentration of Si69 was 1 phr for improved properties, though the improvements are not as significant as in the case of maleic anhydride grafting.Thermal stability of the blend was increased by using silane-coupling agent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Precipitated silica is the most promising alternative for carbon black in tyre tread compounds due to its improved performance in terms of rolling resistance and wet grip.But its poor processability is a serious limitation to its commercial application.This thesis suggests a novel route for the incorporation of silica in rubbers,i.e.,precipitation of silica in rubber latex followed by coagulation of the latex to get rubber-silica maseterbatch.Composites with in situ precipitated silica showed improved processability and mechanical properties,when compared to conventional silica composites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis describes studies on development of short Nylon-6 fibre composites based on rubber-toughened polystyrene (PS). Toughening was done using natural rubber (NR), styrene-butadiene rubber (SBR) and whole tyre reclaim (WTR). The composites were prepared by melt mixing in an internal mixer at 170 oC. It was found that the optimum blend ratio was 85/15 for PS/NR, 90/10 for PS/SBR and 90/22 for PS/WTR blends. The effect of dynamic vulcanisation on 85/15 PS/NR and 90/10 PS/SBR blends using dicumyl peroxide (DCP) at various concentrations were also studied. The dynamic crosslinking improved the tensile properties, flexural properties, impact strength and dynamic mechanical properties of both the blends. The effect of unmodified and resorcinol formaldehyde latex (RFL)-coated short Nylon-6 fibres on the mechanical properties, morphology and dynamic mechanical properties of 85/15 PS/NR, 90/10 PS/SBR and 90/22 PS/WTR blends were studied. Fibre loading was varied from 0 to 3 wt.%. For 85/15 PS/NR blend, there was a significant enhancement in tensile properties, flexural properties and impact strength with 1 wt.% of both unmodified and RFL-coated fibres. Dynamic mechanical analysis revealed that the storage modulus at room temperature was maximum at 1 wt.% fiber loading for both composites. The surface functionality of the fiber was improved by giving alkali treatment. Maleic anhydride-grafted-polystyrene (MA-g-PS) was prepared and used as a compatibiliser. The effect of MA-g-PS on the composites was investigated with respect to mechanical properties, morphology and dynamic mechanical properties. The compatibiliser loading was varied from 0 to 2 wt.%. The properties were enhanced significantly in the case of treated and untreated fibre composites at a compatibiliser loading of 0.75 wt.%. SEM analysis confirmed better bonding between the fibre and the matrix. Dynamic mechanical studies showed that the storage modulus at room temperature improved for treated fibre composites in the presence of compatibiliser. In the case of 90/10 PS/SBR composites, the addition of short Nylon-6 fibres at 1 wt.% loading improved the tensile modulus, flexural properties and impact strength while the tensile strength was marginally reduced. The surface treated fibers along with compatibiliser at 0.5 wt.% improved the tensile properties, flexural properties and impact strength. DMA reveale that the storage modulus at room temperature was better for composites containing untreated fibre and the compatibiliser. In the case of 90/22 PS/WTR blends, 1 wt.% unmodified fibre and 0.5 wt.% RFL-coated fibres improved tensile modulus, flexural properties and impact strength. Tensile strength was improved marginally. The surface treatment of Nylon fibre and the addition of compatibiliser at 0.5 wt.% enhanced the tensile properties, flexural properties and impact strength. The dynamic mechanical analysis showed that the storage modulus at room temperature was better for untreated fibre composites in conjunction with the compatibiliser. The thermal stability of PS/NR was studied by TGA. Thermal stability of the blends improved with dynamic vulcanisation and with the incorporation of RFL-coated Nylon fibres. The untreated and partially hydrolyzed fibre composites in conjunction with the compatibiliser enhanced the thermal stability. Kinetic studies showed that the degradation of the blends and the composites followed first order kinetics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present work was to investigate the toughening of phenolic thermoset and its composites reinforced with sisal fibers, using hydroxyl-terminated polybutadiene rubber (HTPB) as both impact modifier and coupling agent. Substantial increase in the impact strength of the thermoset was achieved by the addition 10% of HTPB. Scanning electron microscopy (SEM) images of the material with 15% HTPB content revealed the formation of some rubber aggregates that reduced the efficiency of the toughening mechanism. In composites, the toughening effect was observed only when 2.5% of HTPB was added. The rubber aggregates were found located mainly at the matrix-fiber interface suggesting that HTPB could be used as coupling agent between the sisal fibers and the phenolic matrix. A composite reinforced with sisal fibers pre-impregnated with HTPB was then prepared; its SEM images showed the formation of a thin coating of HTPB on the surface of the fibers. The ability of HTBP as coupling agent between sisal fibers and phenolic matrix was then investigated by preparing a composite reinforced with sisal fibers pre-treated with HTPB. As revealed by its SEM images, the HTPB pre-treatment of the fibers resulted on the formation of a thin coating of HTPB on the surface of the fibers, which provided better compatibility between the fibers and the matrix at their interface, resulting in a material with low water absorption capacity and no loss of impact strength. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the progressive increase of vehicles, the number of used tires is globally one of the serious environmental problems faced now. Therefore, several researches have being developed for its reuse. The use of tires' rubber in the concrete is a possible form of its a pplication, aiming a the recycling of this material and the improvement of certain properties, as tenacity, impact resistance, thermal and acoustic isolation. This article presents conclusions that several researchers obtained using the rubberized concrete. Thus there were researched several works enclosing the period of 1993 to 2003, presenting then the results of some characteristics of this concrete such as: physical properties in fresh and hardened state, mechanical properties and properties that remit the durability. The bibliographical revision has as objective to subsidize future researches that can contribute to improve the use of this concrete in civil construction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Red mud (RM) is a mineral waste, residue of the Bayer process used to obtain alumina from bauxite. While the exploration of rolled pebble damages the environment and is much more controlled by the government, the huge RM disposal areas do not stop increasing and polluting soil, rivers and groundwater sources in Amazon. In this work, the material mixtures used to produce coarse aggregates presented up to 80% of RM, 30% of metakaolin and 30% of active silica as recycled waste. Several tests were carried out to determine the aggregates physical properties and to evaluate the mechanical performance of the concretes with the new aggregates, including hydraulic abrasion strength, and the results were compared to the reference ones, i.e. rolled pebble concretes. Additionally, the sintering process neutralizes any toxic substance as occur in some RM products like tiles and bricks, and these results have encouraged an industrial or semi-industrial production of RM aggregates for concretes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Esta Tesis trata sobre el diseño y desarrollo de un material constructivo de fachada (tras ventilada), empleando plástico reciclado (granza de caucho, de neumáticos fuera de uso) para su elaboración. El uso de materiales reciclados para la elaboración de nuevos materiales constructivos, es a día de hoy, un valor agregado que contribuye tanto a la disminución de desechos tóxicos, como a la fabricación de productos de alta calidad. La investigación partió de la necesidad de comprender qué es un plástico, cómo son producidos, cuáles son los factores que permitían su reciclaje y qué propiedades podrían ser aprovechadas para desarrollar un nuevo material constructivo. En el estado del arte, fueron analizados los aspectos del plástico relacionados a su composición, propiedades, tipologías, producción, consumo, legislación europea y española, reciclaje y valorización energética. Para analizar más profundamente los materiales desarrollados a partir de plásticos reciclados, desde textiles hasta elementos constructivos. Con el conocimiento adquirido mediante este análisis previo, se diseñó una metodología de experimentación, utilizando caucho reciclado y derivados del yeso como agregados, en una matriz de resinas poliméricas reforzada con fibras naturales y sintéticas. Los resultados obtenidos en los ensayos físicos y térmicos, con los elementos producidos, demostraron que el material tiene una excelente resistencia a tensión así como una baja conductividad térmica. Esta investigación, servirá como precedente para el desarrollo de nuevos materiales y sistemas constructivos, utilizando agregados de plástico reciclado, en los procesos de fabricación. Ya que ha comprobado el enorme potencial que ofrecen, creando nuevos materiales, y contribuyendo a reducir la contaminación medio ambiental. "La mayor recompensa de nuestro trabajo no es lo que nos pagan por él, sino aquello en lo que nos convierte". John Ruskin Material compuesto (Composite) de caucho reciclado, fibras y resinas poliméricas. ABSTRACT This thesis deals with the design and development of a new facade construction material using recycled plastic (rubber pellets from used tires) for processing. The use of recycled materials for the development of new building materials, today is an added value which contributes both to the reduction of toxic waste, as well as the processing of products of good quality. The research derives from the need to understand what a plastic is, how they are produced, what the factors that allowed recycling are and what properties can be exploited to develop a new building material. In the prior art, were analyzed plastic aspects related to its composition, properties, typologies, production, consumption, European and Spanish legislation, recycling and energy recovery. To further analyze the materials developed from recycled plastics, from textiles to construction elements. With the knowledge gained from this previous analysis, we designed an experimental approach using recycled rubber and plaster derivatives as aggregates in a polymeric resin matrix reinforced with natural and synthetic fibers. The results obtained in physical and thermal testing, with the elements produced, showed that the material has excellent tensile strength and a low thermal conductivity. This research will serve as a precedent for the development of new materials and building systems, using recycled plastic aggregates in the manufacturing processes. Since it was found the enormous potential, creating new materials, and helping reduce environmental pollution. "The greatest reward of our work is not what we get paid for it, but what they make us."