923 resultados para Tyre rubber recycled aggregates


Relevância:

100.00% 100.00%

Publicador:

Resumo:

La presente Tesis Doctoral estudia el uso de la fracción fina de los residuos de construcción y demolición (RCD) en la fabricación de morteros de albañilería. El principal uso de los áridos reciclados de RCD es la construcción de rellenos o firmes de carreteras, aunque su uso como áridos para la fabricación de hormigones o morteros le daría un mayor valor añadido. A nivel internacional existen numerosos estudios sobre la utilización de la fracción gruesa de los áridos reciclados de RCD en la fabricación de hormigones. Sin embargo son escasos los trabajos llevados a cabo para valorizar la fracción fina. Actualmente en España la fracción fina de los áridos reciclados de RCD está infrautilizada y en la mayoría de los casos depositada sin uso en los vertederos de las Plantas de reciclaje. En este trabajo se han utilizado dos tipos de áridos reciclados, uno procedente de residuos de hormigón (FRCA) y otro de residuos mixtos de tabiquería con un alto porcentaje de ladrillo rojo cerámico (FMRA). Todos los materiales han sido caracterizados desde un punto de vista físico, químico y mineralógico para justificar el efecto de su incorporación a la fabricación de morteros industriales de albañilería. En una primera fase se estudiaron las propiedades del mortero fresco y endurecido fabricado con FRCA y cinco niveles de sustitución volumétrica de arena natural y FRCA: 0%, 5%, 10%, 20% y 40%.Se utilizó un cemento puzolánico tipo CEM-IV y se evaluaron las propiedades a corto y largo plazo de morteros de baja resistencia (M5) En una segunda fase, se utilizó un cemento tipo CEM-II y se fabricaron morteros de mayor resistencia (M-10) utilizando FRMA. En esta etapa se llevaron a cabo sustituciones de arena natural por arena reciclada de 0%, 25%, 50%, 75% y 100%. El residuo fue evaluado medioambientalmente mediante el test de conformidad antes y después de ser ligado con cemento (lixiviación). Los resultados fueron completados con estudios de durabilidad. Con el objetivo de completar los estudios anteriores, se llevó a cabo una tercera fase, donde se sustituyó hasta un 100% de arena natural por FRCA, utilizando un cemento tipo CEM-II para fabricar un mortero tipo M-10, dosificado de manera similar al empleado en la segunda fase de este trabajo. Como conclusión general de esta tesis, se puede decir que pueden admitirse tasas de sustitución de hasta un 50% de arena natural por árido reciclado en morteros industriales de albañilería para usos de interior sin que sus propiedades puedan verse afectadas significativamente. Los resultados obtenidos contribuyen a reducir la extracción de arena natural de canteras y ríos, minimizar el consumo de energía y emisiones de CO2, mitigar el calentamiento global y evitar el depósito en vertedero de la fracción fina de RCD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urban health and well-being are becoming current issues of modern cities due to local climate change and environmental noise. The Urban Heat Island and the Urban Noise Island have a direct impact on the economic, social, and environmental aspects of urban life, negatively affecting the well-being of worldwide citizens. The present research is focused on the study of innovative materials employed in the production of wearing course mixtures aiming to mitigate these phenomena. In particular, a synthetic transparent binder substituting bitumen and recycled aggregates produced from construction and demolition waste. Four mixtures were analysed. Among them, Mix 1 and Mix 2 are conventional wearing courses. The first is exclusively made of natural aggregates, while the second is constituted of 45 % of recycled aggregates (RA). Mix 3 and Mix 4 are draining wearing courses and, in this case, Mix 4 was produced by using 55 % of RA. Laboratory tests were required to fully characterize all the produced samples, allowing a proper comparison of results. Overall, all the mixtures studied provide prominent results suggesting potential applications of these innovative wearing courses in cycle lanes, historical centres, plazas, and parking lots. Among the conventional mixtures, Mix 2 is the most likely to assure the best performance in terms of road safety, efficiency, and durability while as far as the draining mixtures are concerned, Mix 4 is preferable due to its high content of recycled aggregates.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main objective of the present study is to assess the environmental advantages of substituting aluminium for a polymer composite in the manufacture of a structural product (a frame to be used as a support for solar panels). The composite was made of polypropylene and a recycled tyres’ rubber granulate. Analysis of different composite formulations was performed, to assess the variation of the environmental impact with the percentage of rubber granulate incorporation. The results demonstrate that the decision on which of the two systems (aluminium or composite) has the best life cycle performance is strongly dependent on the End-of Life (EoL) stage of the composite frame. When the EoL is deposition in a landfill, the aluminium frame performs globally better than its composite counterpart. However, when it is incineration with energy recovery or recycling, the composite frame is environmentally preferable. The raw material production stage was found to be responsible for most of the impacts in the two frame systems. In that context, it was shown that various benefits can accrue in several environmental impact categories by recycling rubber tyres and using the resulting materials. This is in a significant part also due to the recycling of the steel in the tyres. The present work illustrates how it is possible to minimize the overall environmental impact of consumer products through the adequate selection of their constitutive materials in the design stage. Additionally it demonstrates how an adequate EoL planning can be an important issue when developing a sustainable product, since it can highly influence its overall life cycle performance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The majority of worldwide structures use concrete as its main material. This happens because concrete is economically feasible, due to its undemanding production technology and case Of use. However, it is widely recognized that concrete production has a strong environmental impact in the planet. Natural aggregates use is one of the most important problems of concrete production nowadays, since they are obtained from limited, and in some countries scarce, resources. In Portugal, although there are enough stone quarries to cover coarse aggregates needs for several more years, Supplies of fine aggregates are becoming scarcer, especially in the northern part of the country. On the other hand, as concrete structures' life cycle comes to an end, an urgent need emerges to establish technically and economically viable solutions for demolition debris, other than for use as road base and quarry fill. This paper presents a partial life cycle assessment (LCA) of concrete made with fine recycled concrete aggregates performed with EcoConcrete tool. EcoConcrete is a tailor-made, interactive, learning and communications tool promoted by the Joint Project Group (JPG) on the LCA of concrete, to qualify and quantify the overall environment impact of concrete products. It consists of an interactive Excel-spreadsheet in which several environmental inputs (material quantities, distances from origin to production Site, production processes) and outputs (material, energy, emissions to air, water, soil or waste) are collected in a life cycle inventory, and are then processed to determine the environmental impact (assessment) of the analysed concrete, in terms of ozone layer depletion, smog or "greenhouse" effect.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is considered that using crushed recycled concrete as aggregate for concrete production is a viable alternative to dumping and would help to conserve abiotic resources. This use has fundamentally been based on the coarse fraction because the fine fraction is likely to degrade the performance of the resulting concrete. This paper presents results from a research work undertaken at Institut Superior Tecnico (IST), Lisbon, Portugal, in which the effects of incorporating two types of superplasticizer on the mechanical performance of concrete containing fine recycled aggregate were evaluated. The purpose was to see if the addition of superplasticizer would offset the detrimental effects associated with the use of fine recycled concrete aggregate. The experimental programme is described and the results of tests for splitting tensile strength, modulus of elasticity and abrasion resistance are presented. The relative performance of concrete made with recycled aggregate was found to decrease. However, the same concrete with admixtures in general exhibited a better mechanical performance than the reference mixes without admixtures or with a less active superplasticizer. Therefore, it is argued that the mechanical performance of concrete made with fine recycled concrete aggregates can be as good as that of conventional concrete, if superplasticizers are used to reduce the water-cement ratio of the former concrete.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Glass fibre-reinforced plastics (GFRP), nowadays commonly used in the construction, transportation and automobile sectors, have been considered inherently difficult to recycle due to both: cross-linked nature of thermoset resins, which cannot be remolded, and complex composition of the composite itself, which includes glass fibres, matrix and different types of inorganic fillers. Presently, most of the GFRP waste is landfilled leading to negative environmental impacts and supplementary added costs. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. There are several methods to recycle GFR thermostable materials: (a) incineration, with partial energy recovery due to the heat generated during organic part combustion; (b) thermal and/or chemical recycling, such as solvolysis, pyrolisis and similar thermal decomposition processes, with glass fibre recovering; and (c) mechanical recycling or size reduction, in which the material is subjected to a milling process in order to obtain a specific grain size that makes the material suitable as reinforcement in new formulations. This last method has important advantages over the previous ones: there is no atmospheric pollution by gas emission, a much simpler equipment is required as compared with ovens necessary for thermal recycling processes, and does not require the use of chemical solvents with subsequent environmental impacts. In this study the effect of incorporation of recycled GFRP waste materials, obtained by means of milling processes, on mechanical behavior of polyester polymer mortars was assessed. For this purpose, different contents of recycled GFRP waste materials, with distinct size gradings, were incorporated into polyester polymer mortars as sand aggregates and filler replacements. The effect of GFRP waste treatment with silane coupling agent was also assessed. Design of experiments and data treatment were accomplish by means of factorial design and analysis of variance ANOVA. The use of factorial experiment design, instead of the one factor at-a-time method is efficient at allowing the evaluation of the effects and possible interactions of the different material factors involved. Experimental results were promising toward the recyclability of GFRP waste materials as polymer mortar aggregates, without significant loss of mechanical properties with regard to non-modified polymer mortars.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper evaluates the influence of two superplasticizers (SP) on the rheological behaviour of concrete made with fine recycled concrete aggregates (FRCA). Three families of concrete were tested: family CO made without SP, family Cl made with a regular superplasticizer and family C2 made with a high-performance superplasticizer. Five replacement ratios of natural sand by FRCA were tested: 0%, 10%, 30%, 50% and 100%. The coarse aggregates were natural gravels. Three criteria were established to design the concrete mixes' composition: keep the same particle size distribution curves, adjust the water/cement ratio to obtain a similar slump and no pre-saturation of the FRCA. All mixes had the same cement and SP content. The results show that the incorporation of FRCA significantly increased the shrinkage and creep deformation. The FRCA's effect was influenced by the curing age. The reference concrete made with natural sand stabilizes the creep deformation faster than the mixes made with FRCA. The incorporation of superplasticizer increased the shrinkage at early ages and decreased the shrinkage at 91 days of age. The regular superplasticizer did not improve the creep deformation while the high-performance superplasticizer highly improved this property. The incorporation of FRCA jeopardized the SP's effectiveness. This study demonstrated that to use FRCA and superplasticizer for concrete production it is necessary to take into account the different rheological behaviour of these mixes. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The reuse of recycled concrete aggregates in new hot-mix asphalt can be a more sustainable method of production, but these mixtures may need a heat treatment before compaction to improve their water sensitivity performance. A direct consequence of this treatment is an increase in the hot-mix asphalt resilient modulus. The aim of this paper is to analyse the effect of ageing on the stiffness of asphalt mixtures with different amounts of recycled concrete aggregates, before and after a heat treatment, which was analysed through the assessment of its bitumen properties. Moreover, this paper also aims to analyse whether the rolling thin-film oven test is able to simulate the ageing effect of the heat treatment. In the laboratory work, a paving grade bitumen B50/70 has been used to produce asphalt mixtures with 0% and 30% recycled concrete aggregates, and the bitumen was later characterised (using penetration, softening point, dynamic viscosity and dynamic shear rheometer tests) in various situations, such as when using virgin bitumen, short-term aged bitumen, aged bitumen after heat treatment (simulated with 4 h of rolling thin-film oven test) and bitumen samples recovered from asphalt mixtures with different production mixes (0% and 30% recycled concrete aggregate) and heat treatment conditions (0 and 4 h of curing time in the oven). Based on the results obtained, it could be concluded that the ageing resulting from the heat treatment is the primary cause of the hot-mix asphalt's increased stiffness, while recycled concrete aggregate content has a small influence. Moreover, it could be concluded that when there is no curing time, the recycled concrete aggregate protects the bitumen against ageing. Additionally, it could be stated that the rolling thin-film test is able to adequately simulate the ageing effect of the heat treatment. Thus, this test is useful for determining the ageing suffered by the bitumen when the recycled concrete aggregate mixture is manufactured using a heat treatment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this research was to evaluate the performance and the use of asphalt rubber binders and recycled rubber granules in asphalt pavement in the state of Iowa. This five year research project was initiated in June 1991 and it was incorporated into Muscatine County Construction Project US 61 from Muscatine to Blue Grass over an existing 10 in. (25.4 cm) by 24 ft (7.3 m) jointed rigid concrete pavement constructed in 1957. The research site consisted of four experimental sections (one section containing rubber chip, one section containing reacted asphalt rubber in both binder and surface, and two sections containing reacted asphalt rubber in surface) and four control sections. This report contains findings of the University of Northern Iowa research team covering selected responsibilities of the research project "Determination of the aging and changing of the conventional asphalt binder and asphalt-rubber binder". Based on the laboratory test, the inclusion of recycled crumb rubber into asphalt affects the ductility of modified binder at various temperatures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Iowa Department of Transportation is evaluating the use of ground recycled crumb rubber from discarded tires in asphalt rubber cement. There were four projects completed during 1991 and another one constructed in 1992. This project is located on IA 140 north of Kingsley in Plymouth County. The project contains one section with reacted asphalt rubber cement (ARC) used in both binder and surface courses, one with reacted ARC used in the surface course and a conventional binder course, and a conventional mix control section. The reacted rubber binder course was placed on October 17, 1991 and the reacted rubber surface course was placed on October 17, 18, and 19. Inclement weather caused a slight delay in placing or constructing the surface. There was a minor problem with shoving and cracking of the binder course. The construction went well otherwise. Information included in this report consists of test results, construction reports, and cost comparisons.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Iowa Department of Transportation is evaluating the use of discarded tires in asphalt rubber cement. There have been five projects completed in Iowa. This project is located on US 151 north of Cascade to US 61 in Dubuque. One section consists of an asphalt rubber cement surface and a conventional binder and two sections contain both asphalt rubber cement surface and binder. The control section of conventional asphalt was completed this spring. Information included in this report consists of test results, construction reports, and cost comparisons.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The disposal of discarded tires has become a major problem. Different methods of recycling have been researched. Currently, Iowa is researching the use of ground recycled crumb rubber from discarded tires in asphalt rubber cement. Six projects have been completed in Iowa using asphalt rubber cement. This project is located on IA 947 (University Avenue) in Cedar Falls/Waterloo. The project contains one section with asphalt rubber cement used in both the binder and surface courses and one section using asphalt rubber cement in the surface course with a conventional binder. There are two control sections where conventional asphalt pavement was placed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Roughly 242 million used tires are generated annually in the United States. Many of these tires end up being landfilled or stockpiled. The stockpiles are unsightly, unsanitary, and also collect water which creates the perfect breeding ground for mosquitoes, some of which carry disease. In an effort to reduce the number of used tire stockpiles the federal government mandated the use of recycled rubber in federally funded, state implemented department of transportation (DOT) projects. This mandate required the use of recycled rubber in 5% of the asphalt cement concrete (ACC) tonnage used in federally funded projects in 1994, increasing that amount by 5% each year until 20% was reached, and remaining at 20% thereafter. The mandate was removed as part of the appropriations process in 1994, after the projects in this research had been completed. This report covers five separate projects that were constructed by the Iowa Department Of Transportation (DOT) in 1991 and 1992. These projects had all had some form of rubber incorporated into their construction and were evaluated for 5 years. The conclusion of the study is that the pavements with tire rubber added performed essentially the same as conventional ACC pavement. An exception was the use of rubber chips in a surface lift. This performed better at crack control and worse with friction values than conventional ACC. The cost of the pavement with rubber additive was significantly higher. As a result, the benefits do not outweigh the costs of using this recycled rubber process in pavements in Iowa.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Discarded tires present major disposal and environmental problems. The recycling of those tires in asphalt cement concrete is what this research deals with. The Iowa DOT and the University of Northern Iowa (UNI) are evaluating the use of discarded tires in asphalt rubber cement and rubber chip mixes. The project is located on US 61 between Blue Grass and Muscatine in Muscatine County. It contains four rubberized asphalt sections and control sections. One section consists of reacted rubber asphalt cement used in both the binder and surface courses, and one section, both lanes, contains a rubber chip mix. The reacted rubber asphalt and the rubber chip mixes were laid in July 1991. The project construction went well with a few problems of shoving and cracking of the mat. This report contains information about procedures and tests that were run and those that will be run. It also has a cost comparison since this is a major concern with the use of asphalt rubber. Evaluation of this project will continue for five years. Three more research projects containing rubberized asphalt were constructed in 1991 and another is to be constructed in 1992.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The disposal of discarded tires has become a major problem. Different methods of recycling have been researched. Currently, Iowa is researching the use of ground recycled crumb rubber from discarded tires in asphalt rubber cement. Six projects have been completed in Iowa using asphalt rubber cement. This project is located on IA 947 (University Avenue) in Cedar Falls/Waterloo. The project contains one section with asphalt rubber cement used in both the binder and surface courses and one section using asphalt rubber cement in the surface course with a conventional binder. There are two control sections where conventional asphalt pavement was placed.